ALORA: Affine Low-Rank Approximations

被引:0
|
作者
Alan Ayala
Xavier Claeys
Laura Grigori
机构
[1] INRIA Paris,Laboratoire Jacques
[2] Sorbonne Université,Louis Lions
[3] Univ Paris-Diderot SPC,Laboratoire Jacques
[4] CNRS,Louis Lions
[5] équipe ALPINES,undefined
[6] Sorbonne Université,undefined
[7] Univ Paris-Diderot SPC,undefined
[8] CNRS,undefined
[9] INRIA,undefined
[10] équipe ALPINES,undefined
来源
Journal of Scientific Computing | 2019年 / 79卷
关键词
Low rank; QR factorization; Subspace iteration; Affine subspaces; 65F25; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present the concept of affine low-rank approximation for an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} matrix, consisting in fitting its columns into an affine subspace of dimension at most k≪min(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ll \min (m,n)$$\end{document}. We present the algorithm ALORA that constructs an affine approximation by slightly modifying the application of any low-rank approximation method. We focus on approximations created with the classical QRCP and subspace iteration algorithms. For the former, we discuss existing pivoting techniques and provide a bound for the error when an arbitrary pivoting technique is used. For the case of fsubspace iteration, we prove a result on the convergence of singular vectors, showing a bound that agrees with the one recently proved for the convergence of singular values. Finally, we present numerical experiments using challenging matrices taken from different fields, showing good performance and validating the theoretical framework.
引用
收藏
页码:1135 / 1160
页数:25
相关论文
共 50 条
  • [21] An analytical algorithm for generalized low-rank approximations of matrices
    Liang, ZZ
    Shi, PF
    PATTERN RECOGNITION, 2005, 38 (11) : 2213 - 2216
  • [22] Low-rank matrix approximations for Coherent point drift
    Dupej, Jan
    Krajicek, Vaclav
    Pelikan, Josef
    PATTERN RECOGNITION LETTERS, 2015, 52 : 53 - 58
  • [23] EXISTENCE OF DYNAMICAL LOW-RANK APPROXIMATIONS TO PARABOLIC PROBLEMS
    Bachmayr, Markus
    Eisenmann, Henrik
    Kieri, Emil
    Uschmajew, Andre
    MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1799 - 1830
  • [24] On the limitations of low-rank approximations in contact mechanics problems
    Kollepara, Kiran Sagar
    Navarro-Jimenez, Jose M.
    Le Guennec, Yves
    Silva, Luisa
    Aguado, Jose, V
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (01) : 217 - 234
  • [25] A signal processing application of randomized low-rank approximations
    Parker, Peter
    Wolfe, Patrick J.
    Tarokh, Vahid
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 311 - 316
  • [26] Randomized Projection for Rank-Revealing Matrix Factorizations and Low-Rank Approximations
    Duersch, Jed A.
    Gu, Ming
    SIAM REVIEW, 2020, 62 (03) : 661 - 682
  • [27] LOW-RANK SIFT: AN AFFINE INVARIANT FEATURE FOR PLACE RECOGNITION
    Yang, Harry
    Cai, Shengnan
    Wang, Jingdong
    Quan, Long
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5731 - 5735
  • [28] A compact Heart iteration for low-rank approximations of large matrices
    Dax, Achiya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [29] Feature extraction using low-rank approximations of the kernel matrix
    Teixeira, A. R.
    Tome, A. M.
    Lang, E. W.
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 404 - +
  • [30] Computing Optimal Low-Rank Matrix Approximations for Image Processing
    Chung, Julianne
    Chung, Matthias
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 670 - 674