VC-Dimension of Sets of Permutations

被引:0
|
作者
Ran Raz
机构
[1] Department of Applied Mathematics,
[2] Weizmann Institute; Rehovot 76100,undefined
[3] ISRAEL; E-mail: ranraz@wisdom.weizmann.ac.il,undefined
来源
Combinatorica | 2000年 / 20卷
关键词
AMS Subject Classification (1991) Classes:  05A05, 05A16, 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
of a set of permutations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} to be the maximal k such that there exist distinct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} that appear in A in all possible linear orders, that is, every linear order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is equivalent to the standard order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for at least one permutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:241 / 255
页数:14
相关论文
共 50 条
  • [41] VC-dimension of a context-dependent Perceptron
    Ciskowski, P
    MODELING AND USING CONTEXT, PROCEEDINGS, 2001, 2116 : 429 - 432
  • [42] On the VC-dimension and boolean functions with long runs
    Ratsaby, Joel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (02): : 205 - 225
  • [43] The VC-Dimension of Visibility on the Boundary of a Simple Polygon
    Gibson, Matt
    Krohn, Erik
    Wang, Qing
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 541 - 551
  • [44] Minimum Polygons for Fixed Visibility VC-Dimension
    Beck, Moritz
    Storandt, Sabine
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 65 - 77
  • [45] Lower bound on VC-dimension by local shattering
    Erlich, Y
    Chazan, D
    Petrack, S
    Levy, A
    NEURAL COMPUTATION, 1997, 9 (04) : 771 - 776
  • [46] VC-Dimension of Hyperplanes Over Finite Fields
    Ascoli, Ruben
    Betti, Livia
    Cheigh, Justin
    Iosevich, Alex
    Jeong, Ryan
    Liu, Xuyan
    Mcdonald, Brian
    Milgrim, Wyatt
    Miller, Steven J.
    Acosta, Francisco Romero
    Iannuzzelli, Santiago Velazquez
    GRAPHS AND COMBINATORICS, 2025, 41 (02)
  • [47] MEASURING THE VC-DIMENSION OF A LEARNING-MACHINE
    VAPNIK, V
    LEVIN, E
    LECUN, Y
    NEURAL COMPUTATION, 1994, 6 (05) : 851 - 876
  • [48] The VC-dimension of set systems defined by graphs
    Carleton University, School of Computer Science, Ottawa, Ont. K1S 5B6, Canada
    不详
    不详
    不详
    Discrete Appl Math, 3 (237-257):
  • [49] Unlabeled compression schemes exceeding the VC-dimension
    Palvolgyi, Domotor
    Tardos, Gabor
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 102 - 107
  • [50] VC-dimension and pseudo-random graphs
    Pham, Thang
    Senger, Steven
    Tait, Michael
    Thu-Huyen, Nguyen
    DISCRETE APPLIED MATHEMATICS, 2025, 365 : 231 - 246