Geometry of bi-warped product submanifolds in Sasakian and cosymplectic manifolds

被引:0
|
作者
Bang-Yen Chen
Siraj Uddin
Azeb Alghanemi
Awatif Al-Jedani
Ion Mihai
机构
[1] Michigan State University,Department of Mathematics
[2] King Abdulaziz University,Department of Mathematics, Faculty of Science
[3] University of Jeddah,Department of Mathematics, Faculty of Science
[4] University of Bucharest,Faculty of Mathematics and Computer Science
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Warped products; Bi-warped products; Pointwise slant submanifolds; Dirichlet energy; Sasakian manifolds; Primary 53C15; Secondary 53C40; 53C42; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
A bi-warped product of the form: M=NT×f1N⊥n1×f2Nθn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N_T \times _{f_1}N^{n_{1}}_\perp \times _{f_2} N^{n_{2}}_\theta $$\end{document} in a contact metric manifold is called a CRS bi-warped product, where NT,N⊥n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_T,\, N^{n_{1}}_\perp $$\end{document} and Nθn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{n_{2}}_\theta $$\end{document} are invariant, anti-invariant and proper pointwise slant submanifolds, respectively. First, we prove that there are no proper CRS bi-warped products other than contact CR-biwarped products in any Sasakian manifold. Then, we prove that if M is a CRS bi-warped product in a cosymplectic manifold, its second fundamental form h satisfies ‖h‖2≥2n1‖∇(lnf1)‖2+2n2(1+2cot2θ)‖∇(lnf2)‖2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert h\Vert ^2\ge 2n_1\Vert \nabla (\ln f_1)\Vert ^2+2n_2(1+2\cot ^2\theta )\Vert \nabla (\ln f_2)\Vert ^2. \end{aligned}$$\end{document}Several applications of this inequality are given. Finally, we provide a non-trivial example of CRS bi-warped product which satisfies the equality case.
引用
收藏
相关论文
共 50 条
  • [21] Certain investigations of sequential warped product submanifolds on cosymplectic manifolds
    Anil Sharma
    Anuj Kumar
    Nasser Bin Turki
    Sameh Shenawy
    Journal of Inequalities and Applications, 2023
  • [22] Semi-invariant warped product submanifolds of cosymplectic manifolds
    Meraj Ali Khan
    Siraj Uddin
    Rashmi Sachdeva
    Journal of Inequalities and Applications, 2012
  • [23] Contact CR-Warped product Submanifolds in Cosymplectic Manifolds
    Atceken, Mehmet
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 965 - 977
  • [24] Another characterization of warped product submanifolds of nearly cosymplectic manifolds
    Alkhaldi, Ali H.
    Kamal, Abid
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02): : 1248 - 1259
  • [25] Certain investigations of sequential warped product submanifolds on cosymplectic manifolds
    Sharma, Anil
    Kumar, Anuj
    Bin Turki, Nasser
    Shenawy, Sameh
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [26] Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications
    Ali, Akram
    Ozel, Cenap
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)
  • [27] Contact CR-warped product submanifolds in Sasakian manifolds
    Hasegawa, I
    Mihai, I
    GEOMETRIAE DEDICATA, 2003, 102 (01) : 143 - 150
  • [28] Contact CR-Warped Product Submanifolds in Sasakian Manifolds
    Izumi Hasegawa
    Ion Mihai
    Geometriae Dedicata, 2003, 102 : 143 - 150
  • [29] WARPED PRODUCT CR-SUBMANIFOLDS OF LP-COSYMPLECTIC MANIFOLDS
    Uddin, Siraj
    FILOMAT, 2010, 24 (01) : 87 - 95
  • [30] ANOTHER PROOF OF DERIVED INEQUALITY FOR WARPED PRODUCT SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS
    Uddin, Siraj
    Al-Solamy, Falleh R.
    Journal of Mathematical Analysis, 2016, 7 (04): : 93 - 97