Chromatic Number of Graphs each Path of which is 3-colourable

被引:0
|
作者
Randerath B. [1 ]
Schiermeyer I. [2 ]
机构
[1] Institut für Informatik Universitat zu Köln, Köln
[2] Fakultät für Mathematik und Informatik Technische Universität Bergakademie Freiberg, Freiberg
关键词
chromatic number; Colouring; spaned subgraph;
D O I
10.1007/BF03322762
中图分类号
学科分类号
摘要
In his paper “Fruit salad” (mixed for Paul Erdos) Gyárfás has posed the following conjecture: If each path of a graph spans at most 3-chromatic subgraph then the graph is k-colourable (with a constant k, perhaps with k = 4). We will show that these graphs are colourable with 3 · Illgc ¦V(G)¦⌉ colours for a suitable constant c = 8/7. As a corollary we obtain that every graph G admits a partition of its vertex set V(G) into at most Illgc ¦V(G)¦⌋ subsets Vi for a suitable constant c = 8/7, such that the components of each induced subgraph G[Vi] are spaned by a path. © 2002, Birkhäuser Verlag, Basel.
引用
收藏
页码:150 / 155
页数:5
相关论文
共 50 条
  • [21] Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs
    Filakovsky, Marek
    Nakajima, Tamio-Vesa
    Oprsal, Jakub
    Tasinato, Gianluca
    Wagner, Uli
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [22] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [23] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 151
  • [24] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [25] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [26] On Bridge Graphs with Local Antimagic Chromatic Number 3
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Zhang, Ruixue
    MATHEMATICS, 2025, 13 (01)
  • [27] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [28] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [29] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [30] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296