Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes

被引:0
|
作者
Alfred Burian
Claire Kremen
James Shyan-Tau Wu
Michael Beckmann
Mark Bulling
Lucas Alejandro Garibaldi
Tamás Krisztin
Zia Mehrabi
Navin Ramankutty
Ralf Seppelt
机构
[1] UFZ—Helmholtz Centre for Environmental Research,Department of Computational Landscape Ecology
[2] Lurio University,Marine Ecology Department
[3] University of British Columbia,Institute for Resources, Environment and Sustainability
[4] University of British Columbia,Department of Zoology
[5] University of British Columbia,Biodiversity Research Centre and IBioS Collaboratory
[6] University of Derby,Environmental Sustainability Research Centre
[7] Universidad Nacional de Río Negro,Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural
[8] Consejo Nacional de Investigaciones Científicas y Técnicas,Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural
[9] International Institute for Applied Systems Analysis,Integrated Biosphere Futures
[10] University of Colorado Boulder,Department of Environmental Studies
[11] University of British Columbia,School of Public Policy and Global Affairs
[12] Martin-Luther University Halle-Wittenberg,Institute of Geoscience and Geography
[13] German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Intensive agriculture with high reliance on pesticides and fertilizers constitutes a major strategy for ‘feeding the world’. However, such conventional intensification is linked to diminishing returns and can result in ‘intensification traps’—production declines triggered by the negative feedback of biodiversity loss at high input levels. Here we developed a novel framework that accounts for biodiversity feedback on crop yields to evaluate the risk and magnitude of intensification traps. Simulations grounded in systematic literature reviews showed that intensification traps emerge in most landscape types, but to a lesser extent in major cereal production systems. Furthermore, small reductions in maximal production (5–10%) could be frequently transmitted into substantial biodiversity gains, resulting in small-loss large-gain trade-offs prevailing across landscape types. However, sensitivity analyses revealed a strong context dependence of trap emergence, inducing substantial uncertainty in the identification of optimal management at the field scale. Hence, we recommend the development of case-specific safety margins for intensification preventing double losses in biodiversity and food security associated with intensification traps.
引用
收藏
页码:752 / 760
页数:8
相关论文
共 50 条
  • [21] Quantifying and sustaining biodiversity in tropical agricultural landscapes
    Mendenhall, Chase D.
    Shields-Estrada, Analisa
    Krishnaswami, Arjun J.
    Daily, Gretchen C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (51) : 14544 - 14551
  • [22] Biodiversity Conservation in Agricultural Landscapes: the Importance of the Matrix
    Tavares, Patricia Dias
    Uzeda, Mariella Camardelli
    Pires, Alexandra dos Santos
    FLORESTA E AMBIENTE, 2019, 26 (04):
  • [23] Integrating biodiversity and conservation with modern agricultural landscapes
    S. Kumaraswamy
    K. Kunte
    Biodiversity and Conservation, 2013, 22 : 2735 - 2750
  • [24] Patterns of biodiversity and habitat sensitivity in agricultural landscapes
    De Simone, Serena
    Sigura, Maurizia
    Boscutti, Francesco
    JOURNAL OF ENVIRONMENTAL PLANNING AND MANAGEMENT, 2017, 60 (07) : 1173 - 1192
  • [25] Integrating biodiversity and conservation with modern agricultural landscapes
    Kumaraswamy, S.
    Kunte, K.
    BIODIVERSITY AND CONSERVATION, 2013, 22 (12) : 2735 - 2750
  • [26] The Satoyama Index: A biodiversity indicator for agricultural landscapes
    Kadoya, Taku
    Washitani, Izumi
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2011, 140 (1-2) : 20 - 26
  • [27] Comparative biodiversity along a gradient of agricultural landscapes
    Burel, F
    Baudry, J
    Butet, A
    Clergeau, P
    Delettre, Y
    Le Coeur, D
    Dubs, F
    Morvan, N
    Paillat, G
    Petit, S
    Thenail, C
    Brunel, E
    Lefeuvre, JC
    ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 1998, 19 (01): : 47 - 60
  • [28] Natural tree regeneration in agricultural landscapes: The implications of intensification
    Sato, Chloe E.
    Wood, Jeff T.
    Stein, John A.
    Crane, Mason
    Okada, Sachiko
    Michael, Damian R.
    Kay, Geoffrey M.
    Florance, Daniel
    Seddon, Julian
    Gibbons, Philip
    Lindenmayer, David B.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 230 : 98 - 104
  • [29] How Agricultural Intensification Affects Biodiversity and Ecosystem Services
    Emmerson, M.
    Morales, M. B.
    Onate, J. J.
    Batry, P.
    Berendse, F.
    Liira, J.
    Aavik, T.
    Guerrero, I.
    Bommarco, R.
    Eggers, S.
    Part, T.
    Tscharntke, T.
    Weisser, W.
    Clement, L.
    Bengtsson, J.
    ADVANCES IN ECOLOGICAL RESEARCH, VOL 55: LARGE-SCALE ECOLOGY: MODEL SYSTEMS TO GLOBAL PERSPECTIVES, 2016, 55 : 43 - 97
  • [30] Assessing the impacts of agricultural intensification on biodiversity: a British perspective
    Firbank, Les G.
    Petit, Sandrine
    Smart, Simon
    Blain, Alasdair
    Fuller, Robert J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1492) : 777 - 787