The properties of weakly collapsing solutions to the nonlinear Schrödinger equation at large values of the free parameters

被引:0
|
作者
Yu. N. Ovchinnikov
V. L. Vereshchagin
机构
[1] Max Planck Institute for Physics of Complex Systems,Landau Institute for Theoretical Physics
[2] Russian Academy of Sciences,Institute of Mathematics and Computing Center
[3] Ural Division Russian Academy of Sciences,undefined
关键词
Spectroscopy; State Physics; Field Theory; Elementary Particle; Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that there exists an infinite set of weakly collapsing solutions with zero energy. Zero energy solutions are distributed along two lines in the space of parameters (A, C1). At large values of C1 (C1→∞), the distance between the nearest points on every line tends to a finite limit. Along each of the lines, the amplitude of the oscillating terms is exponentially small with respect to the parameter C1.
引用
收藏
页码:1307 / 1313
页数:6
相关论文
共 50 条
  • [41] Asymptotic behavior of weakly collapsing solutions of the nonlinear Schrodinger equation
    Ovchinnikov, YN
    Vereshchagin, VL
    JETP LETTERS, 2001, 74 (02) : 72 - 76
  • [42] Comparison of Solutions of the General Nonlinear Amplitude Equation and a Modified Schrӧdinger Equation
    A. M. Dakova
    D. Y. Dakova
    L. M. Kovachev
    V. I. Slavchev
    Journal of Russian Laser Research, 2016, 37 : 155 - 163
  • [43] Asymptotic Expansion of Solutions of an Elliptic Equation Related to the Nonlinear Schrödinger Equation
    M. Franca
    R. Johnson
    Journal of Dynamics and Differential Equations, 2003, 15 (2-3) : 535 - 551
  • [44] EXACT EXPLICIT SOLUTIONS OF THE NONLINEAR SCHRDINGER EQUATION COUPLED TO THE BOUSSINESQ EQUATION
    姚若侠
    李志斌
    ActaMathematicaScientia, 2003, (04) : 453 - 460
  • [45] Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation
    Boling Guo
    Guolian Wang
    Frontiers of Mathematics in China, 2008, 3
  • [46] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [47] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [48] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [49] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [50] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824