Enlargement of Monotone Operators with Applications to Variational Inequalities

被引:0
|
作者
Regina S. Burachik
Alfredo N. Iusem
B. F. Svaiter
机构
[1] Pontíficia Universidade Católica de Rio de Janeiro,Departamento de Matemática
[2] Instituto de Matemática Pura e Aplicada,undefined
来源
Set-Valued Analysis | 1997年 / 5卷
关键词
convex optimization; variational inequalities; proximal point methods; monotone operators;
D O I
暂无
中图分类号
学科分类号
摘要
Given a point-to-set operator T, we introduce the operator Tε defined as Tε(x)= {u: 〈 u − v, x − y 〉 ≥ −ε for all y ɛ Rn, v ɛ T(y)}. When T is maximal monotone Tε inherits most properties of the ε-subdifferential, e.g. it is bounded on bounded sets, Tε(x) contains the image through T of a sufficiently small ball around x, etc. We prove these and other relevant properties of Tε, and apply it to generate an inexact proximal point method with generalized distances for variational inequalities, whose subproblems consist of solving problems of the form 0 ɛ Hε(x), while the subproblems of the exact method are of the form 0 ɛ H(x). If εk is the coefficient used in the kth iteration and the εk's are summable, then the sequence generated by the inexact algorithm is still convergent to a solution of the original problem. If the original operator is well behaved enough, then the solution set of each subproblem contains a ball around the exact solution, and so each subproblem can be finitely solved.
引用
收藏
页码:159 / 180
页数:21
相关论文
共 50 条
  • [41] Solving variational inequalities with monotone operators on domains given by Linear Minimization Oracles
    Juditsky, Anatoli
    Nemirovski, Arkadi
    MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 221 - 256
  • [42] Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators
    Stonyakin, F. S.
    Titov, A. A.
    Makarenko, D. V.
    Alkousa, M. S.
    MATHEMATICAL NOTES, 2022, 112 (5-6) : 965 - 977
  • [43] Existence Results for Variational Inequalities with Surjectivity Consequences Related to Generalized Monotone Operators
    Kassay, Gabor
    Miholca, Mihaela
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (03) : 721 - 740
  • [44] An improved prediction-correction method for monotone variational inequalities with separable operators
    Xu, M. H.
    Jiang, J. L.
    Li, B.
    Xu, B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2074 - 2086
  • [45] VARIATIONAL-INEQUALITIES FOR MONOTONE-OPERATORS IN NONREFLEXIVE BANACH-SPACES
    CHANG, SS
    LEE, BS
    CHEN, YQ
    APPLIED MATHEMATICS LETTERS, 1995, 8 (06) : 29 - 34
  • [46] Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators
    F. S. Stonyakin
    A. A. Titov
    D. V. Makarenko
    M. S. Alkousa
    Mathematical Notes, 2022, 112 : 965 - 977
  • [47] ON THE VARIATIONAL REPRESENTATION OF MONOTONE OPERATORS
    Visintin, Augusto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04): : 909 - 918
  • [48] Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds
    Edvaldo E. A. Batista
    Glaydston de Carvalho Bento
    Orizon P. Ferreira
    Journal of Optimization Theory and Applications, 2016, 170 : 916 - 931
  • [49] Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds
    Batista, Edvaldo E. A.
    Bento, Glaydston de Carvalho
    Ferreira, Orizon P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) : 916 - 931
  • [50] Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators
    Bruce Cox
    Anatoli Juditsky
    Arkadi Nemirovski
    Journal of Optimization Theory and Applications, 2017, 172 : 402 - 435