Periodic solutions of p-Laplacian equations with singularities

被引:0
|
作者
Shipin Lu
Tao Zhong
Yajing Gao
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
Liénard equation; topological degree; singularity; periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of existence of periodic solution is studied for p-Laplacian Liénard equations with singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document} and x=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=+\infty$\end{document}. By using the topological degree theory, some new results are obtained, and an example is given to illustrate the effectiveness of our results. Our research enriches the contents of second order differential equations with singularity.
引用
收藏
相关论文
共 50 条
  • [1] Periodic solutions of p-Laplacian equations with singularities
    Lu, Shipin
    Zhong, Tao
    Gao, Yajing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Periodic solutions for p-Laplacian Rayleigh equations with singularities
    Lu, Shipin
    Zhong, Tao
    Chen, Lijuan
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 12
  • [3] Periodic solutions for p-Laplacian Rayleigh equations with singularities
    Shipin Lu
    Tao Zhong
    Lijuan Chen
    Boundary Value Problems, 2016
  • [4] Periodic solutions for p-Laplacian Rayleigh equations
    Cheung, Wing-Sum
    Ren, Jingli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) : 2003 - 2012
  • [5] Existence of periodic solutions for a class of p-Laplacian equations
    Xiaojun Chang
    Yu Qiao
    Boundary Value Problems, 2013
  • [6] PERIODIC SOLUTIONS TO DIFFERENTIAL EQUATIONS WITH A GENERALIZED P-LAPLACIAN
    Lipowski, Adam
    Przeradzki, Bogdan
    Szymanska-Debowska, Katarzyna
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2593 - 2601
  • [7] Existence of periodic solutions for a class of p-Laplacian equations
    Chang, Xiaojun
    Qiao, Yu
    BOUNDARY VALUE PROBLEMS, 2013,
  • [8] Isolated singularities of positive solutions of p-Laplacian type equations in Rd
    Fraas, Martin
    Pinchover, Yehuda
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 1097 - 1119
  • [9] Existence of Periodic Solutions for p-Laplacian Equations on Time Scales
    Cao, Fengjuan
    Han, Zhenlai
    Sun, Shurong
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [10] Existence of Solutions for Asymptotically Periodic Fractional p-Laplacian Equations
    He, Shuwen
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (02): : 329 - 342