Periodic solutions of p-Laplacian equations with singularities

被引:0
|
作者
Shipin Lu
Tao Zhong
Yajing Gao
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
Liénard equation; topological degree; singularity; periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of existence of periodic solution is studied for p-Laplacian Liénard equations with singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document} and x=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=+\infty$\end{document}. By using the topological degree theory, some new results are obtained, and an example is given to illustrate the effectiveness of our results. Our research enriches the contents of second order differential equations with singularity.
引用
收藏
相关论文
共 50 条
  • [41] Boundedness of Solutions of Quasi-periodic p-Laplacian Equations with Jumping Nonlinearity
    Zhang, Xin Li
    Peng, Ya Qun
    Piao, Da Xiong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (01) : 176 - 192
  • [42] PERIODIC SOLUTIONS OF FOURTH-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN
    Liu, Yuji
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2009, 32 : 61 - 73
  • [43] EXISTENCE OF PERIODIC SOLUTIONS OF FOURTH-ORDER p-LAPLACIAN DIFFERENCE EQUATIONS
    Shi, Haiping
    Liu, Xia
    Zhang, Yuanbiao
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (01) : 53 - 73
  • [44] On weak solutions for p-Laplacian equations with weights
    Pucci, Patrizia
    Servadei, Raffaella
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2007, 18 (03): : 257 - 267
  • [45] Uniqueness and positivity for solutions of equations with the p-Laplacian
    Fleckinger-Pelle, J
    Hernandez, J
    Takac, P
    de Thelin, F
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 141 - 155
  • [46] Regularity of solutions to degenerate p-Laplacian equations
    Cruz-Uribe, David
    Moen, Kabe
    Naibo, Virginia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 458 - 478
  • [47] Multiple solutions for p-Laplacian type equations
    Kristaly, Alexandru
    Lisei, Hannelore
    Varga, Csaba
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1375 - 1381
  • [48] Existence of solutions for p-Laplacian discrete equations
    Bisci, Giovanni Molica
    Repovs, Dusan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 454 - 461
  • [49] Multiple solutions for a system of equations with p-Laplacian
    Cai, Shuting
    Li, Yongqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2504 - 2521
  • [50] Multiple solutions for coercive p-Laplacian equations
    Liu, SB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 229 - 236