A Sharp Upper Bound for the Number of Spanning Trees of a Graph

被引:0
|
作者
Kinkar Ch. Das
机构
[1] Université Paris-XI,
[2] Orsay,undefined
[3] LRI,undefined
来源
Graphs and Combinatorics | 2007年 / 23卷
关键词
Graph; spanning trees; Laplacian matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a simple graph with n vertices, e edges and d1 be the highest degree. Further let λi, i = 1,2,...,n be the non-increasing eigenvalues of the Laplacian matrix of the graph G. In this paper, we obtain the following result: For connected graph G, λ2 = λ3 = ... =  λn-1 if and only if G is a complete graph or a star graph or a (d1,d1) complete bipartite graph.
引用
收藏
页码:625 / 632
页数:7
相关论文
共 50 条
  • [41] The number of spanning trees in Kn-complement of a bipartite graph
    Gong, Helin
    Gong, Yu
    Ge, Jun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (02) : 541 - 554
  • [42] The number of spanning trees in a k5 chain graph
    Kosar, Zunaira
    Zaman, Shahid
    Ali, Wajid
    Ullah, Asad
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [43] Spanning trees with minimum number of leaves in the square graph of a tree
    Wu, Qiuxin
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2016, 16 (01) : 21 - 27
  • [44] THE NUMBER OF SPANNING TREES OF THE BIPARTITE COMPLEMENT OF A SEMIREGULAR BIPARTITE GRAPH
    Gong, Helin
    Yao, Jutian
    Zhang, Hailiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 739 - 746
  • [45] The number and degree distribution of spanning trees in the Tower of Hanoi graph
    Zhang, Zhongzhi
    Wu, Shunqi
    Li, Mingyun
    Comellas, Francesc
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 443 - 455
  • [46] THEOREM IN THE THEORY OF DETERMINANTS AND THE NUMBER OF SPANNING TREES IN A GRAPH.
    Thulasiraman, K.
    Swamy, M.N.S.
    Canadian electrical engineering journal, 1983, 8 (04): : 147 - 152
  • [47] AN UPPER BOUND ON THE DOUBLE DOMINATION NUMBER OF TREES
    Amjadi, J.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 133 - 139
  • [48] A sharp upper bound for the expected number of false rejections
    Gordon, Alexander Y.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) : 1507 - 1514
  • [49] A Sharp Upper Bound on the Cycle Isolation Number of Graphs
    Cui, Qing
    Zhang, Jingshu
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [50] A Sharp Upper Bound on the Cycle Isolation Number of Graphs
    Qing Cui
    Jingshu Zhang
    Graphs and Combinatorics, 2023, 39