Groups satisfying the minimal condition on subgroups which are not transitively normal

被引:0
|
作者
F. de Giovanni
L. A. Kurdachenko
A. Russo
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] National University of Dnipro,Department of Algebra
[3] Università della Campania Luigi Vanvitelli,Dipartimento di Matematica e Fisica
关键词
-group; -group; Transitively normal subgroup; 20E15;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup X of a group G is called transitively normal if X is normal in any subgroup Y of G such that X≤Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\le Y$$\end{document} and X is subnormal in Y. Thus all subgroups of a group G are transitively normal if and only if normality is a transitive relation in every subgroup of G (i.e. G is a T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{T}$$\end{document}-group). It is proved that a group G with no infinite simple sections satisfies the minimal condition on subgroups that are not transitively normal if and only if either G is Černikov or a T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{T}}$$\end{document}-group.
引用
收藏
页码:397 / 405
页数:8
相关论文
共 50 条