Groups satisfying the minimal condition on subgroups which are not transitively normal

被引:0
|
作者
F. de Giovanni
L. A. Kurdachenko
A. Russo
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] National University of Dnipro,Department of Algebra
[3] Università della Campania Luigi Vanvitelli,Dipartimento di Matematica e Fisica
关键词
-group; -group; Transitively normal subgroup; 20E15;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup X of a group G is called transitively normal if X is normal in any subgroup Y of G such that X≤Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\le Y$$\end{document} and X is subnormal in Y. Thus all subgroups of a group G are transitively normal if and only if normality is a transitive relation in every subgroup of G (i.e. G is a T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{T}$$\end{document}-group). It is proved that a group G with no infinite simple sections satisfies the minimal condition on subgroups that are not transitively normal if and only if either G is Černikov or a T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{T}}$$\end{document}-group.
引用
收藏
页码:397 / 405
页数:8
相关论文
共 50 条
  • [1] Groups satisfying the minimal condition on subgroups which are not transitively normal
    de Giovanni, F.
    Kurdachenko, L. A.
    Russo, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 397 - 405
  • [2] METANILPOTENT GROUPS SATISFYING MINIMAL CONDITION FOR NORMAL SUBGROUPS
    SILCOCK, HL
    MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (02) : 165 - 173
  • [3] On metanilpotent groups satisfying the minimal condition on normal subgroups
    Robinson, Derek J. S.
    JOURNAL OF GROUP THEORY, 2019, 22 (05) : 809 - 836
  • [4] Groups satisfying the minimal condition on subnormal non-normal subgroups
    De Mari, F
    de Giovanni, F
    ALGEBRA COLLOQUIUM, 2006, 13 (03) : 411 - 420
  • [5] GROUPS SATISFYING MAXIMAL CONDITION FOR NORMAL SUBGROUPS
    WILSON, JS
    MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (02) : 107 - &
  • [6] Groups Satisfying the Minimal Condition for Non-abelian Non-normal Subgroups
    Chernikov, Nikolai S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (01): : 22 - 34
  • [7] Groups with many pronormal and transitively normal subgroups
    Kurdachenko, L. A.
    Semko, N. N., Jr.
    Subbotin, I. Ya.
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 14 (01): : 84 - 106
  • [8] Groups with many pronormal and transitively normal subgroups
    Semko, N. N.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 15 (02): : 269 - 286
  • [9] GROUPS SATISFYING THE MINIMAL-CONDITION ON NON-PRONORMAL SUBGROUPS
    DEGIOVANNI, F
    VINCENZI, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9A (01): : 185 - 194
  • [10] The weak minimal condition on subgroups which fail to be close to normal subgroups
    Dardano, Ulderico
    De Mari, Fausto
    Rinauro, Silvana
    JOURNAL OF ALGEBRA, 2020, 560 : 371 - 382