Schrödinger Operators with Sparse Potentials: Asymptotics of the Fourier Transform¶of the Spectral Measure

被引:0
|
作者
Denis Krutikov
Christian Remling
机构
[1] Universität Essen,
[2] Fachbereich Mathematik/Informatik,undefined
[3] 45117 Essen,undefined
[4] Germany.¶E-mail: denis.kroutikov@uni-essen.de,undefined
[5] Universität Osnabrück,undefined
[6] Fachbereich Mathematik/Informatik,undefined
[7] 49069 Osnabrück,undefined
[8] Germany.¶E-mail: cremling@mathematik.uni-osnabrueck.de,undefined
来源
关键词
Fourier; Fourier Transform; Resonance Structure; Physical Interpretation; Spectral Measure;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pointwise behavior of the Fourier transform of the spectral measure for discrete one-dimensional Schrödinger operators with sparse potentials. We find a resonance structure which admits a physical interpretation in terms of a simple quasiclassical model. We also present an improved version of known results on the spectrum of such operators.
引用
收藏
页码:509 / 532
页数:23
相关论文
共 50 条
  • [31] Semiclassical asymptotics and gaps in the spectra of magnetic Schrödinger operators
    Mathai V.
    Shubin M.
    Geometriae Dedicata, 2002, 91 (1) : 155 - 173
  • [32] Large Coupling Asymptotics for the Lyapunov Exponent of Quasi-Periodic Schrödinger Operators with Analytic Potentials
    Rui Han
    Chris A. Marx
    Annales Henri Poincaré, 2018, 19 : 249 - 265
  • [33] Semigroup and Riesz transform for the Dunkl–Schrödinger operators
    Béchir Amri
    Amel Hammi
    Semigroup Forum, 2020, 101 : 507 - 533
  • [34] On Compressed Resolvents of Schrödinger Operators with Complex Potentials
    Jussi Behrndt
    Complex Analysis and Operator Theory, 2021, 15
  • [35] The Negative Spectrum of Schr?dinger Operators with Fractal Potentials
    Bo Wu
    Hongyong Wang
    Weiyi Su
    AnalysisinTheoryandApplications, 2015, 31 (04) : 381 - 393
  • [36] Trace Formulas for Schrödinger Operators with Complex Potentials
    E. Korotyaev
    Russian Journal of Mathematical Physics, 2020, 27 : 82 - 98
  • [37] A Class of Schrödinger Operators with Decaying Oscillatory Potentials
    Milivoje Lukic
    Communications in Mathematical Physics, 2014, 326 : 441 - 458
  • [38] Eigenvalue Estimates for Schrödinger Operators with Complex Potentials
    Ari Laptev
    Oleg Safronov
    Communications in Mathematical Physics, 2009, 292 : 29 - 54
  • [39] Measure Zero Spectrum of a Class of Schrödinger Operators
    Qing-Hui Liu
    Bo Tan
    Zhi-Xiong Wen
    Jun Wu
    Journal of Statistical Physics, 2002, 106 : 681 - 691
  • [40] Spectral analysis of a class of Schrödinger difference operators
    Ag. Kh. Khanmamedov
    G. M. Masmaliev
    Doklady Mathematics, 2011, 83 : 111 - 112