High-power diode lasers (λ = 1.7–1.8 µm) based on asymmetric quantum-well separate-confinement InGaAsP/InP heterostructures

被引:0
|
作者
A. V. Lyutetskiy
N. A. Pikhtin
N. V. Fetisova
A. Yu. Leshko
S. O. Slipchenko
Z. N. Sokolova
Yu. A. Ryaboshtan
A. A. Marmalyuk
I. S. Tarasov
机构
[1] Russian Academy of Sciences,Ioffe Physicotechnical Institute
[2] Federal State Unitary Enterprise,Stel’makh Polyus Research Institute
来源
Semiconductors | 2009年 / 43卷
关键词
Diode Laser; Quantum Well; Metal Organic Chemical Vapor Deposition; Auger Recombination; Internal Quantum Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Advantages of the concept of high-powered semiconductor nanoheterostructure lasers for the spectral range 1700–1800 nm, grown by MOCVD in the InGaAsP/InP solid solution system, have been experimentally demonstrated. It has been found that using an expanded waveguide enables reduction to 2 cm−1 of the internal optical loss in quantum-well asymmetric separate-confinement double InGaAsP/InP heterostructures emitting at a wavelength of 1.76 µm. The heterostructures developed have been used to create multimode lasers with a room-temperature CW output power of 2.5 W in an aperture of 100 µm. It is shown that use of highly stressed quantum-well InGaAs layers as the active region makes it possible to obtain characteristic temperatures T0 = 50–60 K.
引用
收藏
页码:1602 / 1605
页数:3
相关论文
共 50 条
  • [11] LOW-THRESHOLD TENSILE-STRAINED INGAAS-INGAASP QUANTUM-WELL LASERS WITH SINGLE-STEP SEPARATE-CONFINEMENT HETEROSTRUCTURES
    YAMAMOTO, T
    NOBUHARA, H
    TANAKA, K
    ODAGAWA, T
    SUGAWARA, M
    FUJII, T
    WAKAO, K
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (06) : 1560 - 1564
  • [12] Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures
    S. O. Slipchenko
    D. A. Vinokurov
    N. A. Pikhtin
    Z. N. Sokolova
    A. L. Stankevich
    I. S. Tarasov
    Zh. I. Alferov
    Semiconductors, 2004, 38 : 1430 - 1439
  • [13] High-power semiconductor separate-confinement double heterostructure lasers
    Tarasov, I. S.
    QUANTUM ELECTRONICS, 2010, 40 (08) : 661 - 681
  • [14] High-power laser diodes (λ=808-850 nm) based on asymmetric separate-confinement heterostructures
    Andreev, A. Yu.
    Leshko, A. Yu.
    Lyutetskii, A. V.
    Marmalyuk, A. A.
    Nalyot, T. A.
    Padalitsa, A. A.
    Pikhtin, N. A.
    Sabitov, D. R.
    Simakov, V. A.
    Slipchenko, S. O.
    Khomylev, M. A.
    Tarasov, I. S.
    SEMICONDUCTORS, 2006, 40 (05) : 611 - 614
  • [15] EXCITONIC EFFECTS IN SEPARATE-CONFINEMENT QUANTUM-WELL HETEROSTRUCTURES CDTE/(CD,ZN)TE
    DELEPORTE, E
    BERROIR, JM
    DELALANDE, C
    MAGNEA, N
    MARIETTE, H
    ALLEGRE, J
    CALATAYUD, J
    PHYSICAL REVIEW B, 1992, 45 (11): : 6305 - 6308
  • [16] HIGHLY RELIABLE OPERATION OF HIGH-POWER INGAASP/INGAP/ALGAAS 0.8 MU-M SEPARATE-CONFINEMENT HETEROSTRUCTURE LASERS
    FUKUNAGA, T
    WADA, M
    ASANO, P
    HAYAKAWA, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1995, 34 (9B): : L1175 - L1177
  • [17] High-power lasers (λ = 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure
    D. A. Vinokurov
    A. L. Stankevich
    V. V. Shamakhov
    V. A. Kapitonov
    A. Yu. Leshko
    A. V. Lyutetskiĭ
    D. N. Nikolaev
    N. A. Pikhtin
    N. A. Rudova
    Z. N. Sokolova
    S. O. Slipchenko
    M. A. Khomylev
    I. S. Tarasov
    Semiconductors, 2006, 40 : 745 - 748
  • [18] SIMPLE ANALYSIS OF CARRIER TRANSPORT AND BUILDUP IN SEPARATE-CONFINEMENT HETEROSTRUCTURE QUANTUM-WELL LASERS
    ALAM, M
    LUNDSTROM, M
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1994, 6 (12) : 1418 - 1420
  • [19] Numerical Simulation of the Current Dependence of Emission Spectra of High-Power Pulsed Lasers Based on Separate-Confinement Double Heterostructures
    A. V. Rozhkov
    N. A. Pikhtin
    Technical Physics Letters, 2018, 44 : 476 - 478
  • [20] Numerical Simulation of the Current Dependence of Emission Spectra of High-Power Pulsed Lasers Based on Separate-Confinement Double Heterostructures
    Rozhkov, A. V.
    Pikhtin, N. A.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (06) : 476 - 478