On hyper-order of solutions of higher order linear differential equations with meromorphic coefficients

被引:0
|
作者
Jianren Long
Jun Zhu
机构
[1] Guizhou Normal University,School of Mathematics and Computer Science
关键词
complex differential equation; meromorphic function; hyper-order; 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the growth of meromorphic solutions of the differential equations f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f=0 $$\end{document} and f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=F(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f=F(z), $$\end{document} where A0(z)≢0,A1(z),…,Ak−1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{0}(z)\not\equiv0, A_{1}(z), \ldots, A_{k-1}(z)$\end{document} and F(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F(z)\not \equiv0$\end{document} are meromorphic functions. A precise estimation of the hyper-order of meromorphic solutions of the above equations is given provided that there exists one dominant coefficient, which improves and extends previous results given by Belaïdi, Chen, etc.
引用
收藏
相关论文
共 50 条
  • [21] ON THE GROWTH AND THE ZEROS OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS
    Andasmas, Maamar
    Belaidi, Benharrat
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 199 - 210
  • [22] ON THE GROWTH OF SOLUTIONS OF SOME HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS
    Saidani, M.
    Belaidi, B.
    UFA MATHEMATICAL JOURNAL, 2018, 10 (01): : 115 - 134
  • [23] ON THE ITERATED ORDER OF MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
    Cao Tingbin (Dept. of Math.
    Annals of Differential Equations, 2005, (02) : 111 - 122
  • [24] On the hyper-order of solutions of two class of complex linear differential equations
    Wen Ping Huang
    Jing Lun Zhou
    Jin Tu
    Ju Hong Ning
    Advances in Difference Equations, 2015
  • [25] On the hyper-order of solutions of two class of complex linear differential equations
    Huang, Wen Ping
    Zhou, Jing Lun
    Tu, Jin
    Ning, Ju Hong
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [26] On the Growth of Higher Order Complex Linear Differential Equations Solutions with Entire and Meromorphic Coefficients
    Sanchez Ruiz, Luis Manuel
    Datta, Sanjib Kumar
    Tamang, Samten
    Biswas, Nityagopal
    MATHEMATICS, 2021, 9 (01) : 1 - 10
  • [27] On the hyper order of solutions of a class of higher order linear differential equations
    Belaidi, Benharrat
    Abbas, Said
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (02): : 15 - 30
  • [28] The Fixed Point and Hyper Order of Solutions of Higher Order Nonhomogeneous Linear Differential Equations with Meromorphic Function Coefficents
    Jin, Jin
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3297 - 3300
  • [29] GROWTH OF MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
    Wang, Lijun
    Liu, Huifang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [30] Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations
    Xu, Junfeng
    Zhang, Zhanliang
    KYUNGPOOK MATHEMATICAL JOURNAL, 2008, 48 (01): : 123 - 132