Chromatic polynomial of a picture fuzzy graph with application in traffic light control

被引:0
|
作者
Qamar Abbas
Ghulam Mustafa
机构
[1] The Islamia University of Bahawalpur,Department of Mathematics
关键词
Picture fuzzy graph; Fundamental set; Level graph; Chromatic number; Chromatic polynomial; Application; 03E72; 05C72; 05C78; 05C99;
D O I
暂无
中图分类号
学科分类号
摘要
The fuzzy graph theory has many applications in solving various problems in multiple fields, including networking, communications, clustering, planning, and scheduling. In this article, we introduce the fundamental set of a picture fuzzy graph (PFG) and the (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-level graph ((θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LG) of a PFG, illustrating these concepts with an example. We then discuss the properties of the (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LGs of a PFG. Additionally, we introduce the concept of the chromatic polynomial (CP) of a PFG, providing a demonstration with an example using (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LGs of a PFG and exploring various properties of CP of a PFG. Furthermore, we construct an algorithm, which is executed using Matlab. This algorithm enables us to determine the number of distinct ways to colour a PFG with a specified number of colours. The application of the work presented is to answer the question: How does the picture fuzzy model propose to rectify the inefficiency in traffic signal timing where equal time is allocated to each vehicle in a flow based on vehicle count, leading to potential delays for vehicles with different characteristics, such as motorcycles and containers?
引用
收藏
页码:1395 / 1418
页数:23
相关论文
共 50 条
  • [31] Fuzzy Traffic Light Control Based on Phase Urgency
    Vogel, Alan
    Oremovic, Izidor
    Simic, Robert
    Ivanjko, Edouard
    2019 61ST INTERNATIONAL SYMPOSIUM ELMAR, 2019, : 9 - 14
  • [32] Improving Traffic Light Control by Means of Fuzzy Logic
    Vogel, Alan
    Oremovic, Izidor
    Simic, Robert
    Ivanjko, Edouard
    PROCEEDINGS OF ELMAR-2018: 60TH INTERNATIONAL SYMPOSIUM ELMAR-2018, 2018, : 51 - 56
  • [33] Some properties of regular picture fuzzy graph with application in social network analysis
    Bera, Biswajit
    Banerjee, Avisek
    Khatun, Jasminara
    Amanathulla, Sk
    Pal, Madhumangal
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, : 2959 - 2982
  • [34] A NEW METHOD TO FIND CHROMATIC POLYNOMIAL OF GRAPH AND ITS APPLICATIONS
    刘儒英
    Science Bulletin, 1987, (21) : 1508 - 1509
  • [35] ALGORITHM-24 - ALGORITHM FOR DERIVING CHROMATIC POLYNOMIAL OF A GRAPH
    JAMES, KR
    RIHA, W
    COMPUTING, 1975, 14 (1-2) : 195 - 203
  • [36] RECURSIVE FORMULA FOR CALCULATING THE CHROMATIC POLYNOMIAL OF A GRAPH BY VERTEX DELETION
    许进
    ActaMathematicaScientia, 2004, (04) : 577 - 582
  • [37] A NEW METHOD TO FIND CHROMATIC POLYNOMIAL OF GRAPH AND ITS APPLICATIONS
    LIU, RY
    KEXUE TONGBAO, 1987, 32 (21): : 1508 - 1509
  • [38] The chromatic polynomial of grid graph P3□ Pn
    Yadav, Renu
    Sehgal, Amit
    Sehgal, Sarita
    Malik, Archana
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 619 - 637
  • [39] Recursive formula for calculating the chromatic polynomial of a graph by vertex deletion
    Xu, J
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 577 - 582
  • [40] EXPLICIT FORMULA FOR COEFFICIENTS OF CHROMATIC POLYNOMIAL OF A COMPLETE BIPARTITE GRAPH
    ZEITLIN, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A633 - A633