Chromatic polynomial of a picture fuzzy graph with application in traffic light control

被引:0
|
作者
Qamar Abbas
Ghulam Mustafa
机构
[1] The Islamia University of Bahawalpur,Department of Mathematics
关键词
Picture fuzzy graph; Fundamental set; Level graph; Chromatic number; Chromatic polynomial; Application; 03E72; 05C72; 05C78; 05C99;
D O I
暂无
中图分类号
学科分类号
摘要
The fuzzy graph theory has many applications in solving various problems in multiple fields, including networking, communications, clustering, planning, and scheduling. In this article, we introduce the fundamental set of a picture fuzzy graph (PFG) and the (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-level graph ((θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LG) of a PFG, illustrating these concepts with an example. We then discuss the properties of the (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LGs of a PFG. Additionally, we introduce the concept of the chromatic polynomial (CP) of a PFG, providing a demonstration with an example using (θ,ρ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \rho , \sigma )$$\end{document}-LGs of a PFG and exploring various properties of CP of a PFG. Furthermore, we construct an algorithm, which is executed using Matlab. This algorithm enables us to determine the number of distinct ways to colour a PFG with a specified number of colours. The application of the work presented is to answer the question: How does the picture fuzzy model propose to rectify the inefficiency in traffic signal timing where equal time is allocated to each vehicle in a flow based on vehicle count, leading to potential delays for vehicles with different characteristics, such as motorcycles and containers?
引用
收藏
页码:1395 / 1418
页数:23
相关论文
共 50 条
  • [1] Chromatic polynomial of a picture fuzzy graph with application in traffic light control
    Abbas, Qamar
    Mustafa, Ghulam
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (02) : 1395 - 1418
  • [2] Matlab algorithms for traffic light assignment using fuzzy graph, fuzzy chromatic number, and fuzzy inference system
    Rosyida, Isnaini
    Nurhaida
    Narendra, Alfa
    Widodo
    METHODSX, 2020, 7
  • [3] On the chromatic polynomial of a graph
    Avis, D
    De Simone, C
    Nobili, P
    MATHEMATICAL PROGRAMMING, 2002, 92 (03) : 439 - 452
  • [4] On the chromatic polynomial of a graph
    David Avis
    Caterina De Simone
    Paolo Nobili
    Mathematical Programming, 2002, 92 : 439 - 452
  • [5] Balanced picture fuzzy graph with application
    Amanathulla, Sk
    Bera, Biswajit
    Pal, Madhumangal
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (07) : 5255 - 5281
  • [6] Balanced picture fuzzy graph with application
    Sk Amanathulla
    Biswajit Bera
    Madhumangal Pal
    Artificial Intelligence Review, 2021, 54 : 5255 - 5281
  • [7] Application of maple on computing strong fuzzy chromatic polynomial of fuzzy graphs
    Mamo Abebe Ashebo
    Laxmi Rathour
    V. N. SrinivasaRao Repalle
    BMC Research Notes, 15
  • [8] Application of maple on computing strong fuzzy chromatic polynomial of fuzzy graphs
    Ashebo, Mamo Abebe
    Rathour, Laxmi
    Repalle, V. N. SrinivasaRao
    BMC RESEARCH NOTES, 2022, 15 (01)
  • [9] THE CHROMATIC POLYNOMIAL OF AN UNLABELED GRAPH
    HANLON, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (03) : 226 - 239
  • [10] Bounds to the Chromatic Polynomial of a Graph
    Dohmen K.
    Results in Mathematics, 1998, 33 (1-2) : 87 - 88