Sharp Sobolev Inequalities via Projection Averages

被引:0
|
作者
Philipp Kniefacz
Franz E. Schuster
机构
[1] Vienna University of Technology,
来源
关键词
Sobolev inequalities; Isoperimetric inequalities; Affine invariant inequalities; Convex bodies; 46E35; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
A family of sharp Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them—the affine Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Lutwak, Yang, and Zhang. When p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 1$$\end{document}, the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
引用
收藏
页码:7436 / 7454
页数:18
相关论文
共 50 条
  • [21] Sharp Sobolev inequalities for vector valued maps
    Hebey, Emmanuel
    MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 681 - 708
  • [22] Sharp trace inequalities on fractional Sobolev spaces
    Pak, Hee Chul
    Park, Young Ja
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 761 - 763
  • [23] A NOTE ON EXTREMAL FUNCTIONS FOR SHARP SOBOLEV INEQUALITIES
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [24] Symmetrization and Sharp Sobolev Inequalities in Metric Spaces
    Kalis, Jan
    Milman, Mario
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (02): : 499 - 515
  • [25] From Brunn–Minkowski to sharp Sobolev inequalities
    S. G. Bobkov
    M. Ledoux
    Annali di Matematica Pura ed Applicata, 2008, 187 : 369 - 384
  • [26] Homogeneous sharp Sobolev inequalities on product manifolds
    Ceccon, J
    Montenegro, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 277 - 300
  • [27] Some sharp Sobolev inequalities on BV (Rn)
    Dai, Jin
    Mou, Shuang
    AIMS MATHEMATICS, 2022, 7 (09): : 16851 - 16868
  • [28] Sharp Sobolev inequalities involving boundary terms
    Li, YY
    Zhu, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (01) : 59 - 87
  • [29] Sharp conditions for weighted Sobolev interpolation inequalities
    Chua, SK
    FORUM MATHEMATICUM, 2005, 17 (03) : 461 - 478
  • [30] Characterizations of Sobolev spaces via averages on balls
    Dai, Feng
    Gogatishvili, Amiran
    Yang, Dachun
    Yuan, Wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 86 - 99