New Optimal Asymmetric Quantum Codes Derived from Negacyclic Codes

被引:1
|
作者
Jian-Zhang Chen
Jian-Ping Li
Jie Lin
机构
[1] University of Electronic Science and Technology of China,School of Computer Science and Engineering
关键词
Quantum code; Negacyclic code; Asymmetric quantum code;
D O I
暂无
中图分类号
学科分类号
摘要
The construction of quantum maximum-distance-separable (MDS) codes have been studied by many researchers for many years. Here, by using negacyclic codes, we construct two families of asymmetric quantum codes. The first family is the asymmetric quantum codes with parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[[q^{2}+1,q^{2}+1-2(t+k+1),(2k+2)/(2t+2)]]_{q^{2}}$\end{document}, where 0≤t≤k≤(q−1)/2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q \equiv1(\operatorname{mod} 4)$\end{document}, and k, t are positive integers. The second one is the asymmetric quantum codes with parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[[(q^{2}+1)/2,(q^{2}+1)/2-2(t+k),(2k+1)/(2t+1)]]_{q^{2}}$\end{document}, where 1≤t≤k≤(q−1)/2, and k, t are positive integers. Moreover, the constructed asymmetric quantum codes are optimal and different from the codes available in the literature.
引用
收藏
页码:72 / 79
页数:7
相关论文
共 50 条
  • [31] New Quantum Codes Derived from Cyclic Codes
    Pang, Binbin
    Zhu, Shixin
    Li, Jin
    Li, Lanqiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1058 - 1068
  • [32] New entanglement-assisted quantum error-correcting codes from negacyclic codes
    Xiaojing Chen
    Xingbo Lu
    Shixin Zhu
    Wan Jiang
    Xindi Wang
    Designs, Codes and Cryptography, 2024, 92 : 1163 - 1174
  • [33] Erratum to: Asymmetric quantum codes: new codes from old
    Giuliano G. La Guardia
    Quantum Information Processing, 2013, 12 (8) : 2791 - 2791
  • [34] Two Classes of New Optimal Asymmetric Quantum Codes
    Xiaojing Chen
    Shixin Zhu
    Xiaoshan Kai
    International Journal of Theoretical Physics, 2018, 57 : 1829 - 1838
  • [35] Two Classes of New Optimal Asymmetric Quantum Codes
    Chen, Xiaojing
    Zhu, Shixin
    Kai, Xiaoshan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (06) : 1829 - 1838
  • [36] Some new constructions of optimal asymmetric quantum codes
    Guohui Wang
    Chunming Tang
    Weiming Wei
    Quantum Information Processing, 22
  • [37] Some new constructions of optimal asymmetric quantum codes
    Wang, Guohui
    Tang, Chunming
    Wei, Weiming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [38] Some families of optimal quantum codes derived from constacyclic codes
    Chen, Jianzhang
    Huang, Yuanyuan
    Feng, Chunhui
    Chen, Riqing
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (04): : 725 - 742
  • [39] Construction of quantum negacyclic BCH codes
    Kai, Xiaoshan
    Li, Ping
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (07)
  • [40] A class of negacyclic BCH codes and its application to quantum codes
    Zhu, Shixin
    Sun, Zhonghua
    Li, Ping
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) : 2139 - 2165