Single-cell and transcriptome analysis reveals TAL cells in diabetic nephropathy

被引:0
|
作者
Chengyu Zhang
Han Li
Shixiang Wang
机构
[1] Capital Medical University,Department of Nephrology, Beijing Chao
来源
关键词
Biological markers; Diabetic nephropathy; Quasi-timing analysis; Single-cell analysis; TAL cells;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetic nephropathy is a global public health concern with multifaceted pathogenesis, primarily involving hypertension. Excessive activation of AT1R has been strongly associated with hypertension onset and progression in diabetic nephropathy. This study aimed to conduct thick ascending limb cell single-cell and transcriptomic analysis in diabetic nephropathy, including screening for biological markers, cellular communication, and immune infiltration, to identify potential biomarkers and effective means for prevention and treatment. By using high-dimensional weighted gene co-expression network analysis, least absolute shrinkage and selection operator, machine learning, neural deconvolution, quasi-chronological analysis, non-negative matrix factorization clustering, and monocyte chemotactic protein-induced counter, we identified 7 potential thick ascending limb cell biomarkers for diabetic nephropathy and elucidated the bone morphogenetic protein pathway’s regulation of thick ascending limb cells through podocyte epithelial cells and podocyte cells. The study also highlighted the role of COBL, PPARGC1A, and THSD7A in non-negative matrix factorization clustering and their relationship with thick ascending limb cell immunity in diabetic nephropathy. Our findings provide new insights and avenues for managing diabetic nephropathy, ultimately alleviating the burden on patients and society.
引用
收藏
相关论文
共 50 条
  • [31] Single-cell transcriptome sequencing analysis reveals gynaecomastia to breast cancer transition
    Sun, H.
    Yang, C.
    Wang, Z.
    Shi, L.
    Xia, T.
    Wei, J.
    Ding, Q.
    BREAST, 2021, 56 : S26 - S26
  • [32] Single-cell transcriptome analysis reveals cellular heterogeneity in the aortas of Takayasu arteritis
    Gao, Na
    Tang, He
    Li, Taotao
    Yang, Yi
    Zhao, Honglei
    Wang, Longfei
    Guo, Yanqiu
    Qiao, Bokang
    Pan, Lili
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)
  • [33] Single-cell transcriptome analysis reveals thyrocyte diversity in the zebrafish thyroid gland
    Gillotay, Pierre
    Shankar, Meghna
    Haerlingen, Benoit
    Sema Elif, Eski
    Pozo-Morales, Macarena
    Garteizgogeascoa, Ines
    Reinhardt, Susanne
    Krankel, Annekathrin
    Blasche, Juliane
    Petzold, Andreas
    Ninov, Nikolay
    Kesavan, Gokul
    Lange, Christian
    Brand, Michael
    Lefort, Anne
    Libert, Frederick
    Detours, Vincent
    Costagliola, Sabine
    Sumeet Pal, Singh
    EMBO REPORTS, 2020, 21 (12)
  • [34] Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues
    Shinichi Hashimoto
    Yuta Tabuchi
    Hideaki Yurino
    Yoshihiko Hirohashi
    Shungo Deshimaru
    Takuya Asano
    Tasuku Mariya
    Kenshiro Oshima
    Yuzuru Takamura
    Yoshiaki Ukita
    Akio Ametani
    Naoto Kondo
    Norikazu Monma
    Tadayuki Takeda
    Sadahiko Misu
    Toshitugu Okayama
    Kazuho Ikeo
    Tsuyoshi Saito
    Shuich Kaneko
    Yutaka Suzuki
    Masahira Hattori
    Kouji Matsushima
    Toshihiko Torigoe
    Scientific Reports, 7
  • [35] Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice
    Jiangpeng Wu
    Xiuping Sun
    Chunyi Wu
    Xiaoping Hong
    Lulin Xie
    Zixu Shi
    Liang Zhao
    Qingfeng Du
    Wei Xiao
    Jichao Sun
    Jigang Wang
    Cellular & Molecular Biology Letters, 28
  • [36] SINGLE-CELL TRANSCRIPTOME ANALYSIS OF MEDULLOBLASTOMA
    Hovestadt, Volker
    Filbin, Mariella G.
    Bihannic, Laure
    Shaw, McKenzie L.
    DeWitt, John M.
    Groves, Andrew
    Smith, Kyle S.
    Hadley, Jennifer
    Gajjar, Amar
    Robinson, Giles W.
    Mayr, Lisa
    Slavc, Irene
    Goumnerova, Liliana
    Ligon, Keith L.
    Suva, Mario L.
    Northcott, Paul A.
    Bernstein, Bradley E.
    NEURO-ONCOLOGY, 2018, 20 : 134 - 134
  • [37] Single-cell transcriptome analysis of medulloblastoma
    DeWitt, John
    Hovestadt, Volker
    Filbin, Mariella
    Bihannic, Laure
    Shaw, Mckenzie
    Groves, Andrew
    Smith, Kyle
    Hadley, Jennifer
    Gajjar, Amar
    Robinson, Giles
    Mayr, Lisa
    Slavc, Irene
    Goumnerova, Liliana
    Ligon, Keith
    Suva, Mario
    Northcott, Paul
    Bernstein, Bradley
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2018, 77 (06): : 504 - 505
  • [38] Single-Cell Transcriptome Analysis Reveals the Effect of MIF on Myeloid-Derived Suppressor Cells in Multiple Myeloma
    Zhao, Xiaodong
    Zhou, Jingxin
    Yao, Jinrong
    Shi, Qiaomei
    Su, Jing
    Hu, Na
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2025,
  • [39] Single-cell RNA profiling of glomerular cells in diabetic kidney: a step forward for understanding diabetic nephropathy
    Jose Soler, Maria
    Batlle, Daniel
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7
  • [40] Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment
    Huy Q. Dinh
    Feng Pan
    Geng Wang
    Qing-Feng Huang
    Claire E. Olingy
    Zhi-Yong Wu
    Shao-Hong Wang
    Xin Xu
    Xiu-E Xu
    Jian-Zhong He
    Qian Yang
    Sandra Orsulic
    Marcela Haro
    Li-Yan Li
    Guo-Wei Huang
    Joshua J. Breunig
    H. Phillip Koeffler
    Catherine C. Hedrick
    Li-Yan Xu
    De-Chen Lin
    En-Min Li
    Nature Communications, 12