Sodium-Ion Batteries (a Review)

被引:1
|
作者
A. M. Skundin
T. L. Kulova
A. B. Yaroslavtsev
机构
[1] Russian Academy of Sciences,Frumkin Institute of Physical Chemistry and Electrochemistry
[2] Russian Academy of Sciences,Kurnakov Institute of General and Inorganic Chemistry
来源
关键词
sodium-ion batteries; electrode materials; electrode processes; sodium incorporation; nonaqueous electrolytes;
D O I
暂无
中图分类号
学科分类号
摘要
State-of-the-art in the studies of sodium-ion batteries is discussed in comparison with their deeper developed lithium-ion analogs. The principal problem hindering the development of competitive sodium-ion batteries is the low effectiveness of the electrode materials at hand. The principal efforts in the formation of anodes for the sodium-ion batteries are reduced to the development of materials based on carbon, metals, alloys, and transition metal oxides. Cathode materials are searched among oxides (first of all, layered) and salt systems. Synthesis of electrolytes for the sodium-ion batteries is not sufficiently attended to. Nowadays it is sodium salt solutions in organic solvents that are dominated; however, polymer and solid electrolytes with sodium conductivity may be thought of as very perspective. Reference list contains 584 items.
引用
收藏
页码:113 / 152
页数:39
相关论文
共 50 条
  • [41] Sodium-Ion Batteries: Applications and Properties
    Baca, Petr
    Libich, Jiri
    Gazdosova, Sara
    Polkorab, Jaroslav
    BATTERIES-BASEL, 2025, 11 (02):
  • [42] Future Shines for Sodium-Ion Batteries
    Zhang Yucong
    中国新闻发布(英文版), 2025, (01) : 7 - 14
  • [43] MAKING BETTER SODIUM-ION BATTERIES
    不详
    CHEMICAL & ENGINEERING NEWS, 2011, 89 (30) : 38 - 38
  • [44] Glyoxylic-Acetal-Based Electrolytes for Sodium-Ion Batteries and Sodium-Ion Capacitors
    Leibing, Christian
    Leistenschneider, Desiree
    Neumann, Christof
    Oschatz, Martin
    Turchanin, Andrey
    Balducci, Andrea
    CHEMSUSCHEM, 2023, 16 (13)
  • [45] A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors
    Yi, Ting-Feng
    Sari, Hirbod Maleki Kheimeh
    Li, Xuezhong
    Wang, Fanfan
    Zhu, Yan-Rong
    Hu, Junhua
    Zhang, Jiujun
    Li, Xifei
    NANO ENERGY, 2021, 85
  • [46] Modification of NASICON electrolyte in solid sodium-ion batteries—A short review
    Wu, Si-Hao
    Yu, Hai-Qing
    Hu, Chen-Yang
    Fu, Yu
    Chen, Fu-Liang
    Li, Wei-Jie
    Journal of Central South University, 2024, 31 (12) : 4510 - 4535
  • [47] A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries
    Chang, Guoliang
    Zhao, Yufeng
    Dong, Li
    Wilkinson, David P.
    Zhang, Lei
    Shao, Qinsi
    Yan, Wei
    Sun, Xueliang
    Zhang, Jiujun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (10) : 4996 - 5048
  • [48] Electrode/electrolyte additives for practical sodium-ion batteries: a mini review
    Huang, Zhi-Xiong
    Zhang, Xue-Li
    Zhao, Xin-Xin
    Zhao, Yuan-Yuan
    Aravindan, Vanchiappan
    Liu, Yu-Hang
    Geng, Hongbo
    Wu, Xing-Long
    INORGANIC CHEMISTRY FRONTIERS, 2022, 10 (01): : 37 - 48
  • [49] Advancements and challenges in anode materials for sodium-ion batteries: a comprehensive review
    Shivannanaik, Appu
    Rameshkumar, Anusha Balighatta
    Udayabhanu, Prashantha
    Kalappa, Prashantha
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2024,
  • [50] Cathode Modification of Sodium-Ion Batteries for Improved energy Density: A Review
    Wan, Xiaoyuan
    Li, Yanlin
    Chen, Shenghua
    Duan, Wenyuan
    Lei, Wanying
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (12):