Embedding Theorems for a Certain Function Class of Sobolev Type on Metric Spaces

被引:0
|
作者
A. S. Romanov
机构
来源
关键词
metric space; measure; Sobolev class; embedding theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Given a metric space with a Borel measure μ, we consider a class of functions whose increment is controlled by the measure of a ball containing the corresponding points and a nonnegative function p-summable with respect to μ. We prove some analogs of the classical theorems on embedding Sobolev function classes into Lebesgue spaces.
引用
收藏
页码:376 / 387
页数:11
相关论文
共 50 条
  • [41] NEW CHARACTERIZATION OF CERTAIN SOBOLEV SPACES BY GENERALIZED RIESZ THEOREMS
    SZIGETI, F
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1986, 33 (1-2): : 189 - 190
  • [42] Certain fixed point theorems on partial metric spaces
    Semwal, Pushpendra
    Gairola, Asha Ram
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 1104 - 1118
  • [43] Certain fixed point theorems on partial metric spaces
    Semwal, Pushpendra
    Gairola, Asha Ram
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 1104 - 1118
  • [44] Certain fixed point theorems on partial metric spaces
    Semwal, Pushpendra
    Gairola, Asha Ram
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 1104 - 1118
  • [45] The class of -type contractions in b-metric spaces and fixed point theorems
    Samet, Bessem
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [46] IMBEDDING THEOREMS FOR A CERTAIN CLASS OF FUNCTIONAL SPACES
    DIKAREV, VA
    DOKLADY AKADEMII NAUK SSSR, 1966, 168 (06): : 1239 - &
  • [47] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type—via Orthonormal Wavelets
    Yanchang Han
    Yongsheng Han
    Ziyi He
    Ji Li
    Cristina Pereyra
    The Journal of Geometric Analysis, 2021, 31 : 8947 - 8978
  • [48] Sobolev Embedding Theorems and Their Generalizations for Maps Defined on Topological Spaces with Measures
    Romanovski, N. N.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2022, 77 (01) : 27 - 40
  • [49] Sobolev Embedding Theorems and Their Generalizations for Maps Defined on Topological Spaces with Measures
    N. N. Romanovski
    Moscow University Mathematics Bulletin, 2022, 77 : 27 - 40
  • [50] Embedding Theorems for Sobolev-Besicovitch Spaces of Almost Periodic Functions
    Iannacci, R.
    Bersani, A. M.
    Dell'Acqua, G.
    Santucci, P.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (02): : 443 - 457