Statistical properties of cross-correlation in the Korean stock market

被引:0
|
作者
G. Oh
C. Eom
F. Wang
W.-S. Jung
H. E. Stanley
S. Kim
机构
[1] Chosun University,Division of Business Administration
[2] Pusan National University,Division of Business Administration
[3] Boston University,Center for Polymer Studies and Department of Physics
[4] Graduate Program for Technology and Innovation Managemant,Department of Physics
[5] Pohang University of Science and Technology,undefined
[6] Pohang University of Science and Technology,undefined
[7] Asia Pacific Center for Theoretical Physics,undefined
来源
关键词
Stock Return; Large Eigenvalue; Random Matrix Theory; Portfolio Return; Eigenvalue Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{473}$\end{document} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E(\sigma)$\end{document} with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E(σ) ~ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{-\gamma}$\end{document}, with the exponent γ ~ 2.92 and those for Asian currency crisis decreases significantly.
引用
收藏
页码:55 / 60
页数:5
相关论文
共 50 条
  • [31] Statistical test for Δρ&ITDCCA&IT cross-correlation coefficient
    Guedes, E. F.
    Brito, A. A.
    Oliveira Filho, F. M.
    Fernandez, B. F.
    de Castro, A. P. N.
    da Silva Filho, A. M.
    Zebende, G. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 501 : 134 - 140
  • [32] Cross-correlation analysis on Brazilian gasoline retail market
    Nascimento Filho, A. S.
    Pereira, E. J. A. L.
    Ferreira, Paulo
    Murari, T. B.
    Moret, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 508 : 550 - 557
  • [33] Multifractal cross-correlation analysis in electricity spot market
    Fan, Qingju
    Li, Dan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 429 : 17 - 27
  • [34] Cross-correlation analysis of stock markets using EMD and EEMD
    Xu, Mengjia
    Shang, Pengjian
    Lin, Aijing
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 82 - 90
  • [35] Multifractal cross-correlation spectra analysis on Chinese stock markets
    Zhao, Xiaojun
    Shang, Pengjian
    Shi, Wenbin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 402 : 84 - 92
  • [37] Statistical Test of Detrended Multiple Moving Average Cross-Correlation Analysis and Its Application in Financial Market
    Cao, Guangxi
    Xie, Wenhao
    FLUCTUATION AND NOISE LETTERS, 2023, 22 (03):
  • [38] Financial liberalization and stock market cross-correlation: MF-DCCA analysis based on Shanghai-Hong Kong Stock Connect
    Ruan, Qingsong
    Zhang, Shuhua
    Lv, Dayong
    Lu, Xinsheng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 779 - 791
  • [39] Segment Stock Market, Foreign Investors, and Cross-Correlation: Evidence from MF-DCCA and Spillover Index
    Xu, Nan
    Li, Songsong
    COMPLEXITY, 2020, 2020
  • [40] Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market
    Sun, Xuelian
    Liu, Zixian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 667 - 679