Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions

被引:0
|
作者
F. Müge Sakar
S. Melike Aydoğan
机构
[1] Batman University,Department of Business Administration
[2] Istanbul Technical University,Department of Mathematics
来源
关键词
Analytic functions; Univalent functions; Bi-univalent functions; Faber polynomial expansions; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new subclass TΣ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{\varSigma }(\mu )$$\end{document} of bi univalent functions belong to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} in the open unit disc U=z:z∈Cand|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}} =\left\{ z\, :\,\,z\in {\mathcal {C}}\,\,and \,\, |z| <1\right\} $$\end{document}. Then, we use the concepts of Faber polynomial expansions to find upper bound for the general coefficient of such functions belongs to the defined class. Further, for the functions in this subclass we obtain bound on first three coefficients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document}, |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document} and |a4|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{4}|$$\end{document}. We hope that this paper will inspire future researchers in applying our approach to other related problems.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [31] Initial coefficient bounds for certain class of meromorphic bi-univalent functions
    Zireh, Ahmad
    Salehian, Safa
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 234 - 245
  • [32] INITIAL COEFFICIENT BOUNDS FOR CERTAIN CLASSES OF MEROMORPHIC BI-UNIVALENT FUNCTIONS
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (01)
  • [33] Initial Coefficient Bounds for Bi-Univalent Functions Related to Gregory Coefficients
    Murugusundaramoorthy, Gangadharan
    Vijaya, Kaliappan
    Bulboaca, Teodor
    MATHEMATICS, 2023, 11 (13)
  • [34] Coefficient Estimates for Certain Subclass of Bi-Univalent Functions
    Omar, Rashidah
    Halim, Suzeini Abdul
    Janteng, Aini
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [35] A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator
    Breaz, Daniel
    Orhan, Halit
    Cotirla, Luminita-Ioana
    Arikan, Hava
    AXIOMS, 2023, 12 (02)
  • [36] ESTIMATE FOR INITIAL MACLAURIN COEFFICIENTS OF CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS
    Alkahtani, Badr S.
    Goswami, Pranay
    Bulboaca, Teodor
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 739 - 748
  • [37] Note on bounds on the coefficients of a subclass of m-fold symmetric bi-univalent functions
    Zireh, Ahmad
    Hajiparvaneh, Saideh
    Bulut, Serap
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (01) : 187 - 195
  • [38] Coefficient Bounds for Certain Subclass of Meromorphic Bi-Univalent Functions Defined by Hadamard Product
    Zireh, A.
    Hajiparvaneh, S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (06) : 909 - 920
  • [39] Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions
    Jia, Zeya
    Khan, Nazar
    Khan, Shahid
    Khan, Bilal
    AIMS MATHEMATICS, 2022, 7 (02): : 2512 - 2528
  • [40] FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS DEFINED BY SALAGEAN DIFFERENTIAL OPERATOR
    Bulut, Serap
    MATEMATICKI VESNIK, 2015, 67 (03): : 185 - 193