Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions

被引:0
|
作者
F. Müge Sakar
S. Melike Aydoğan
机构
[1] Batman University,Department of Business Administration
[2] Istanbul Technical University,Department of Mathematics
来源
关键词
Analytic functions; Univalent functions; Bi-univalent functions; Faber polynomial expansions; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new subclass TΣ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{\varSigma }(\mu )$$\end{document} of bi univalent functions belong to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} in the open unit disc U=z:z∈Cand|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}} =\left\{ z\, :\,\,z\in {\mathcal {C}}\,\,and \,\, |z| <1\right\} $$\end{document}. Then, we use the concepts of Faber polynomial expansions to find upper bound for the general coefficient of such functions belongs to the defined class. Further, for the functions in this subclass we obtain bound on first three coefficients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document}, |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document} and |a4|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{4}|$$\end{document}. We hope that this paper will inspire future researchers in applying our approach to other related problems.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条