Improving fine-mapping by modeling infinitesimal effects

被引:0
|
作者
Ran Cui
Roy A. Elzur
Masahiro Kanai
Jacob C. Ulirsch
Omer Weissbrod
Mark J. Daly
Benjamin M. Neale
Zhou Fan
Hilary K. Finucane
机构
[1] Massachusetts General Hospital,Analytic and Translational Genetics Unit
[2] Broad Institute of MIT and Harvard,Program in Medical and Population Genetics
[3] Broad Institute of MIT and Harvard,Stanley Center for Psychiatric Research
[4] Broad Institute of MIT and Harvard,The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease
[5] Harvard Medical School,Department of Biomedical Informatics
[6] University of Helsinki,Institute for Molecular Medicine Finland (FIMM)
[7] Osaka University Graduate School of Medicine,Department of Statistical Genetics
[8] Harvard Medical School,Program in Biological and Biomedical Sciences
[9] Harvard T.H. Chan School of Public Health,Department of Epidemiology
[10] Yale University,Department of Statistics and Data Science
来源
Nature Genetics | 2024年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that nonsparse genetic architecture can lead to miscalibration, while imputation noise, nonuniform distribution of causal variants and quality control filters have minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer larger causal effects. Our methods show improved calibration, RFR and functional enrichment, competitive recall and computational efficiency. Notably, using our methods’ posterior effect sizes substantially increases polygenic risk score accuracy over SuSiE and FINEMAP. Our work improves causal variant identification for complex traits, a fundamental goal of human genetics.
引用
收藏
页码:162 / 169
页数:7
相关论文
共 50 条
  • [41] Fine-mapping of an ancestral recombination breakpoint in DCP1
    Martin Farrall
    Bernard Keavney
    Colin McKenzie
    Marc Delépine
    Fumihiko Matsuda
    G. Mark Lathrop
    Nature Genetics, 1999, 23 : 270 - 271
  • [42] Leveraging multiple ancestries and traits improves fine-mapping accuracy
    Zhou, Feng
    Soremekun, Opeyemi
    Chikowore, Tinashe
    Fatumo, Segun
    Barroso, Ines
    Morris, Andrew
    Asimit, Jennifer
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 6 - 6
  • [43] Fine-mapping of an ancestral recombination breakpoint in DCP1
    Farrall, M
    Keavney, B
    McKenzie, C
    Delépine, M
    Matsuda, F
    Lathrop, GM
    NATURE GENETICS, 1999, 23 (03) : 270 - 271
  • [44] Trans-ethnic study design approaches for fine-mapping
    Asimit, Jennifer L.
    Hatzikotoulas, Konstantinos
    McCarthy, Mark
    Morris, Andrew P.
    Zeggini, Eleftheria
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 (09) : 1330 - 1336
  • [45] Fine-Mapping Type 1 Diabetes Risk at the MHC Locus
    Mcgrail, Carolyn
    Chiou, Joshua
    Benaglio, Paola
    Gaulton, Kyle J.
    DIABETES, 2022, 71
  • [46] Probabilistic fine-mapping of transcriptome-wide association studies
    Nicholas Mancuso
    Malika K. Freund
    Ruth Johnson
    Huwenbo Shi
    Gleb Kichaev
    Alexander Gusev
    Bogdan Pasaniuc
    Nature Genetics, 2019, 51 : 675 - 682
  • [47] Estimating genotyping error rate in a fine-mapping project.
    Levinson, DF
    Ewen, KR
    Bahlo, M
    Treloar, SA
    Mowry, B
    Barlow, JW
    Foote, SJ
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2000, 96 (04): : 570 - 571
  • [48] A Novel Multiple-SNP Approach for Fine-Mapping Studies
    Xu, Jingxiong J. X.
    Ozcelik, Hilmi H. O.
    Kwiatkowski, Maciej M. K.
    Bapat, Bharati B. B.
    Diamandis, Eleftherios E. P. D.
    Zlotta, Alexandre A. R. Z.
    Briollais, Laurent L. B.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 595 - 595
  • [49] Fine-mapping cellular QTLs with RASQUAL and ATAC-seq
    Kumasaka, Natsuhiko
    Knights, Andrew J.
    Gaffney, Daniel J.
    NATURE GENETICS, 2016, 48 (02) : 206 - 213
  • [50] Fine-mapping and positional candidate studies of asthma susceptibility gene
    Huang, SK
    Ober, C
    Blumenthal, MN
    Bleecker, E
    Banks-Schlegel, S
    Rich, S
    Beaty, TH
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2001, 107 (02) : S234 - S234