Exponential fitting method for the time-dependent Schrödinger equation

被引:0
|
作者
M. Rizea
机构
[1] “Horia Hulubei” National Institute of Physics and Nuclear Engineering,Department of Theoretical Physics
来源
关键词
Time-dependent Schrödinger equation; Crank–Nicolson method; Exponential fitted Numerov formula; Transparent boundary conditions; Proton emission;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to increase the accuracy of the numerical solution of the time-dependent Schrödinger equation. In particular, a modification of the standard Crank–Nicolson method by an exponential fitting Numerov formula leading to a higher order in the approximation of the second order spatial derivative along with a better description of oscillating or exponential behavior and different artificial boundary conditions aimed to reduce the reflections of the wave packet at the numerical boundaries are presented. The procedures are illustrated for the deep-tunneling case of proton emission.
引用
收藏
页码:55 / 65
页数:10
相关论文
共 50 条
  • [21] Time-dependent Dunkl-Schrödinger equation with an angular-dependent potential
    Lutfuoglu, B. C.
    Benchikha, A.
    Hamil, B.
    Khantoul, B.
    MODERN PHYSICS LETTERS A, 2025, 40 (07N08)
  • [22] Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation
    Richter, Maria
    Morales, Felipe
    Patchkovskii, Serguei
    Husakou, Anton
    OPTICS EXPRESS, 2023, 31 (24) : 39941 - 39952
  • [23] Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation
    S. I. Vinitsky
    V. P. Gerdt
    A. A. Gusev
    M. S. Kaschiev
    V. A. Rostovtsev
    V. N. Samoylov
    T. V. Tupikova
    Y. Uwano
    Programming and Computer Software, 2006, 32 : 103 - 113
  • [24] Exact solutions to three-dimensional time-dependent Schrödinger equation
    Fakir Chand
    S. C. Mishra
    Pramana, 2007, 68 : 891 - 900
  • [25] Dunkl-Schrödinger Equation with Time-Dependent Harmonic Oscillator Potential
    Benchikha, A.
    Hamil, B.
    Lutfuoglu, B. C.
    Khantoul, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)
  • [26] Solutions of the Time-Dependent Schrödinger Equation for a Two-State System
    J. F. Ralph
    T. D. Clark
    H. Prance
    R. J. Prance
    A. Widom
    Y. N. Srivastava
    Foundations of Physics, 1998, 28 : 1271 - 1282
  • [27] Asymptotic behavior for a dissipative nonlinear Schrödinger equation with time-dependent damping
    Bamri, Chourouk
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [28] Asymptotics of solutions to the time-dependent Schrödinger equation with a small Planck constant
    Omuraliev A.S.
    Computational Mathematics and Mathematical Physics, 2007, 47 (10) : 1675 - 1680
  • [29] New method for solving the time-dependent Schrödinger equation for molecules in a strong pulsed light field
    A. V. Shtoff
    Yu. Yu. Dmitriev
    Optics and Spectroscopy, 2007, 102 : 166 - 174
  • [30] Trial function method and exact solutions to the generalized nonlinear Schrdinger equation with time-dependent coefficient
    曹瑞
    张健
    Chinese Physics B, 2013, 22 (10) : 186 - 189