Exponential fitting method for the time-dependent Schrödinger equation

被引:0
|
作者
M. Rizea
机构
[1] “Horia Hulubei” National Institute of Physics and Nuclear Engineering,Department of Theoretical Physics
来源
关键词
Time-dependent Schrödinger equation; Crank–Nicolson method; Exponential fitted Numerov formula; Transparent boundary conditions; Proton emission;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to increase the accuracy of the numerical solution of the time-dependent Schrödinger equation. In particular, a modification of the standard Crank–Nicolson method by an exponential fitting Numerov formula leading to a higher order in the approximation of the second order spatial derivative along with a better description of oscillating or exponential behavior and different artificial boundary conditions aimed to reduce the reflections of the wave packet at the numerical boundaries are presented. The procedures are illustrated for the deep-tunneling case of proton emission.
引用
收藏
页码:55 / 65
页数:10
相关论文
共 50 条
  • [1] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136
  • [2] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [3] Exponential fitting method for the time-dependent Schrodinger equation
    Rizea, M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (01) : 55 - 65
  • [4] Explicit euler method for solving the time-dependent schrödinger equation
    Sturzu, I.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (05):
  • [5] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [6] Solution of the Schrödinger equation for the time-dependent linear potential
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 341021 - 341023
  • [7] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948
  • [8] A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation
    Daniel Wells
    Harry Quiney
    Scientific Reports, 9
  • [9] Solving the two-dimensional time-dependent Schrödinger equation using the Sinc collocation method and double exponential transformations
    Elgharbi, S.
    Essaouini, M.
    Abouzaid, B.
    Safouhi, H.
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 222 - 231
  • [10] On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation☆
    Gomez, Sergio
    Moiola, Andrea
    Perugia, Ilaria
    Stocker, Paul
    APPLIED MATHEMATICS LETTERS, 2023, 146