Aluminum alloys are applied in large volumes to various mechanical components. However, during the boring process of such alloys, it becomes necessary that H7 tolerances be obtained. Additionally, when machining aluminum alloys, adhesion problems are often noted due to ductility. Furthermore, owing to the high cutting speeds used in this process, the need arises for the utilization of a cutting fluid, in order to reduce adhesion. Other cooling techniques are used worldwide to replace, reduce, or eliminate cutting fluids. In this study, three factorial designs were used to verify performance and compare cutting fluid abundance (CFA), dry machining (DM), and minimum quantity lubrication (MQL) during the boring process, while using polycrystalline diamond (PCD) tools. The input variables were cutting speed (Vc), feed per tooth (fz), and depth of cut (doc), while the output variables were diameter, roundness, and tool wear mechanism analysis. In total, forty-eight experiments were performed. The results presented for MQL were noted as showing similarity with those for CFA. These results indicated that MQL can replace the CFA technique, thus improving process sustainability.