Fitting the extended poisson process model to grouped binary data

被引:0
|
作者
Peter J. Toscas
Malcolm J. Faddy
机构
[1] CSIRO Mathematical and Information Sciences,School of Mathematical Sciences
[2] Queensland University of Technology,undefined
来源
Computational Statistics | 2005年 / 20卷
关键词
Binomial distribution; iterative re-weighted least squares; maximum likelihood; over-dispersion; under-dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
Extended Poisson process modelling allows the construction of a broad class of distributions, including distributions over-dispersed or under-dispersed relative to the binomial distribution, with the binomial distribution being a special case. In this paper an iteratively re-weighted least squares algorithm for fitting such generalised binomial distributions is presented, and is illustrated with an example.
引用
收藏
页码:595 / 609
页数:14
相关论文
共 50 条