Fitting the extended poisson process model to grouped binary data
被引:0
|
作者:
Peter J. Toscas
论文数: 0引用数: 0
h-index: 0
机构:CSIRO Mathematical and Information Sciences,School of Mathematical Sciences
Peter J. Toscas
Malcolm J. Faddy
论文数: 0引用数: 0
h-index: 0
机构:CSIRO Mathematical and Information Sciences,School of Mathematical Sciences
Malcolm J. Faddy
机构:
[1] CSIRO Mathematical and Information Sciences,School of Mathematical Sciences
[2] Queensland University of Technology,undefined
来源:
Computational Statistics
|
2005年
/
20卷
关键词:
Binomial distribution;
iterative re-weighted least squares;
maximum likelihood;
over-dispersion;
under-dispersion;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Extended Poisson process modelling allows the construction of a broad class of distributions, including distributions over-dispersed or under-dispersed relative to the binomial distribution, with the binomial distribution being a special case. In this paper an iteratively re-weighted least squares algorithm for fitting such generalised binomial distributions is presented, and is illustrated with an example.
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
Tao, Yuxin
Li, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Ctr Stat Sci, Dept Ind Engn, Beijing, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
Li, Dong
Niu, Xiaoyue
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USASouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China