A model for dengue disease with variable human population

被引:0
|
作者
Lourdes Esteva
Cristobal Vargas
机构
[1] Departamento de Matemáticas,
[2] Facultad de Ciencias,undefined
[3] UNAM,undefined
[4] Circuito Exterior,undefined
[5] C.U.,undefined
[6] México,undefined
[7] D.F. 04510. e-mail: lesteva@servidor.unam.mx,undefined
[8] Departamento de Matemáticas,undefined
[9] CINVESTAV–IPN,undefined
[10] A.P. 14–740,undefined
[11] México,undefined
[12] D.F. 07000. e-mail: cvargas@math.cinvestav.mx,undefined
来源
关键词
Key words: Dengue; Competitive systems; Global stability; Threshold; Variable population;
D O I
暂无
中图分类号
学科分类号
摘要
 A model for the transmission of dengue fever with variable human population size is analyzed. We find three threshold parameters which govern the existence of the endemic proportion equilibrium, the increase of the human population size, and the behaviour of the total number of human infectives. We prove the global asymptotic stability of the equilibrium points using the theory of competitive systems, compound matrices, and the center manifold theorem.
引用
收藏
页码:220 / 240
页数:20
相关论文
共 50 条
  • [41] BIFURCATION ANALYSIS IN A DENGUE DISEASE MODEL WITH TWO VIRUS SEROTYPES
    Adi-Kusumo, Fajar
    Aini, Aurora N.
    Endrayanto, A. I.
    Gunardi
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 173 - 179
  • [42] Effect of Rainfall for the Dynamical Transmission Model of the Dengue Disease in Thailand
    Chanprasopchai, Pratchaya
    Pongsumpun, Puntani
    Tang, I. Ming
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [43] Age structured model for symptomatic and asymptomatic infections of dengue disease
    Pongsumpun, P.
    International Journal of Modelling and Simulation, 2009, 29 (02): : 199 - 205
  • [44] The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
    Anggriani, N.
    Supriatna, A. K.
    Soewono, E.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [45] An analysis of a mathematical model describing the geographic spread of dengue disease
    de Araujo, Anderson L. A.
    Boldrini, Jose L.
    Calsavara, Bianca M. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 298 - 325
  • [46] Effect of incubation period of virus for the mathematical model of dengue disease
    Pongsumpun, Puntani
    MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN RESEARCH AND EDUCATION, 2007, : 182 - +
  • [47] An SIS epidemic model with variable population size and a delay
    Hethcote, HW
    vandenDriessche, P
    JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 34 (02) : 177 - 194
  • [48] Fluctuations in a SIS epidemic model with variable size population
    Iggidr, A.
    Niri, K.
    Ely, E. Ould Moulay
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 55 - 64
  • [49] Dynamics of a discrete population model with variable carrying capacity
    Dose, T. D.
    Jovanoski, Z.
    Towers, I. N.
    Sidhu, H. S.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 50 - 56
  • [50] DIFFUSION MODEL FOR RANDOM DRIFT WITH VARIABLE POPULATION SIZE
    SMITH, W
    HSIEH, JJ
    BIOMETRICS, 1972, 28 (04) : 1182 - 1182