Carbon release through abrupt permafrost thaw

被引:4
|
作者
Merritt R. Turetsky
Benjamin W. Abbott
Miriam C. Jones
Katey Walter Anthony
David Olefeldt
Edward A. G. Schuur
Guido Grosse
Peter Kuhry
Gustaf Hugelius
Charles Koven
David M. Lawrence
Carolyn Gibson
A. Britta K. Sannel
A. David McGuire
机构
[1] University of Guelph,Department of Integrative Biology
[2] University of Colorado Boulder,Institute of Arctic and Alpine Research (INSTAAR)
[3] Brigham Young University,Department of Plant and Wildlife Sciences
[4] United States Geological Survey,Water and Environmental Research Center
[5] University of Alaska,Department of Renewable Resources
[6] University of Alberta,Center for Ecosystem Science and Society and Department of Biological Sciences
[7] Northern Arizona University,Institute of Geosciences
[8] Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,Department of Physical Geography
[9] University of Potsdam,Bolin Centre for Climate Research
[10] Stockholm University,Climate and Ecosystem Sciences Division
[11] Stockholm University,Institute of Arctic Biology
[12] Lawrence Berkeley National Laboratory,undefined
[13] National Center for Atmospheric Research,undefined
[14] University of Alaska Fairbanks,undefined
来源
Nature Geoscience | 2020年 / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.
引用
收藏
页码:138 / 143
页数:5
相关论文
共 50 条
  • [41] Permafrost thaw releases problems
    Gross, Michael
    CURRENT BIOLOGY, 2019, 29 (02) : R39 - R41
  • [42] Permafrost thaw and northern development
    O'Neill, H. B.
    Burn, C. R.
    Allard, M.
    Arenson, L. U.
    Bunn, M. I.
    Connon, R. F.
    Kokelj, S. A.
    Kokelj, S. V.
    LeBlanc, A. -M.
    Morse, P. D.
    Smith, S. L.
    NATURE CLIMATE CHANGE, 2020, 10 (08) : 722 - +
  • [43] High risk of permafrost thaw
    Edward A. G. Schuur
    Benjamin Abbott
    Nature, 2011, 480 : 32 - 33
  • [44] Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment
    Rodenhizer, Heidi
    Ledman, Justin
    Mauritz, Marguerite
    Natali, Susan M.
    Pegoraro, Elaine
    Plaza, Cesar
    Romano, Emily
    Schadel, Christina
    Taylor, Meghan
    Schuur, Edward
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (06)
  • [45] The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
    Jonathan A. O’Donnell
    M. Torre Jorgenson
    Jennifer W. Harden
    A. David McGuire
    Mikhail Z. Kanevskiy
    Kimberly P. Wickland
    Ecosystems, 2012, 15 : 213 - 229
  • [46] Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw
    Waldrop, M. P.
    McFarland, J.
    Manies, K. L.
    Leewis, M. C.
    Blazewicz, S. J.
    Jones, M. C.
    Neumann, R. B.
    Keller, J. K.
    Cohen, L.
    Euskirchen, E. S.
    Edgar, C.
    Turetsky, M. R.
    Cable, W. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2021, 126 (03)
  • [47] Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
    Jones, Miriam C.
    Harden, Jennifer
    O'Donnell, Jonathan
    Manies, Kristen
    Jorgenson, Torre
    Treat, Claire
    Ewing, Stephanie
    GLOBAL CHANGE BIOLOGY, 2017, 23 (03) : 1109 - 1127
  • [48] The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
    O'Donnell, Jonathan A.
    Jorgenson, M. Torre
    Harden, Jennifer W.
    McGuire, A. David
    Kanevskiy, Mikhail Z.
    Wickland, Kimberly P.
    ECOSYSTEMS, 2012, 15 (02) : 213 - 229
  • [49] Carbon and nitrogen cycling dynamics following permafrost thaw in the Northwest Territories, Canada
    Dieleman, Catherine M.
    Day, Nicola J.
    Holloway, Jean E.
    Baltzer, Jennifer
    Douglas, Thomas A.
    Turetsky, Merritt R.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 845
  • [50] Big Thaw Permafrost holds more carbon than exists in the atmosphere today
    Holmes, Robert Max
    NATURAL HISTORY, 2020, 128 (02) : 14 - 21