Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam

被引:0
|
作者
Zaiqiang Zhang
Jie Cai
Le Ji
Xiaotong Wang
Yan Li
Shengzhi Yang
Peng Lv
Xiuli Hou
Qingfeng Guan
机构
[1] Jiangsu University,College of Materials Science and Engineering
来源
Protection of Metals and Physical Chemistry of Surfaces | 2014年 / 50卷
关键词
Corrosion Resistance; Passive Film; Passive Layer; Irradiate Surface; AISI 304L;
D O I
暂无
中图分类号
学科分类号
摘要
AISI 304L austenite stainless steel was irradiated by a high-current pulsed electron beam (HCPEB) source in different process. The microstructures were investigated in detail by electron microscopy. The relationship between corrosion resistance and the microstructures has been established. Our experimental results suggest that much abundant defect structures were formed within the irradiated surface which promoted the formation of a compact and thick passive layer during the process of corrosion experiment in simulated sea water. This passive layer effectively prevented corrosive anionic species from passing through the surface oxidation layer and delayed the corrosion process, leading to the improvement of irradiated materials’ corrosion performance. However, the craters on the treated surfaces may be turn into new active points on the metal surface which favored local pitting. Our experimental results demonstrate the potential of proper HCPEB processing for improving the corrosion resistance of metallic materials.
引用
收藏
页码:650 / 658
页数:8
相关论文
共 50 条
  • [31] Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant
    S. Ningshen
    M. Sakairi
    Journal of Solid State Electrochemistry, 2015, 19 : 3533 - 3542
  • [32] Elevated temperature material characteristics of AISI 304L stainless steel
    Towfighi, S.
    Romilly, D. P.
    Olson, J. A.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (02) : 151 - 155
  • [33] Oxidation of AISI 304L stainless steel surface with atomic oxygen
    Vesel, A
    Mozetic, M
    Zalar, A
    APPLIED SURFACE SCIENCE, 2002, 200 (1-4) : 94 - 103
  • [34] Fracture failure analysis of AISI 304L stainless steel shaft
    Zangeneh, Sh.
    Ketabchi, M.
    Kalaki, A.
    ENGINEERING FAILURE ANALYSIS, 2014, 36 : 155 - 165
  • [35] A STUDY ON CREVICE CORROSION OF AISI 316L, AISI 304L AND AISI 444 STAINLESS STEELS
    Bellezze, T.
    Quaranta, A.
    Roventi, G.
    Fratesi, R.
    METALLURGIA ITALIANA, 2008, (01): : 7 - 11
  • [36] Predicting microstructure and strength for AISI 304L stainless steel forgings
    Switzner, N. T.
    Sawyer, E. T.
    Everhart, W. A.
    Hanlin, R. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 745 : 474 - 483
  • [37] Development and Characterization of Cladding AISI 304L Stainless Steel on Aluminum
    Gabsi, Yasmine
    Zouari, Sahar
    Abdennadher, Mariem
    Dieng, Lamine
    Elleuch, Riadh
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2025, 9 (02):
  • [38] THE THERMAL-CONDUCTIVITY OF AISI 304L STAINLESS-STEEL
    GRAVES, RS
    KOLLIE, TG
    MCELROY, DL
    GILCHRIST, KE
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1991, 12 (02) : 409 - 415
  • [39] Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen
    Abreu, C. M.
    Cristobal, M. J.
    Merino, P.
    Novoa, X. R.
    Pena, G.
    Perez, M. C.
    ELECTROCHIMICA ACTA, 2008, 53 (20) : 6000 - 6007
  • [40] Ductile fracture of AISI 304L stainless steel sheet in stretching
    Ben Othmen, Khadija
    Haddar, Nader
    Jegat, Anthony
    Manach, Pierre-Yves
    Elleuch, Khaled
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 172