Geodesic graphs with homogeneity conditions

被引:0
|
作者
A. L. Gavrilyuk
A. A. Makhnev
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Division
来源
Doklady Mathematics | 2008年 / 78卷
关键词
Projective Plane; Regular Graph; DOKLADY Mathematic; Intersection Array; Steiner System;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:743 / 745
页数:2
相关论文
共 50 条
  • [41] Conditions for Homogeneity of Subpopulations
    李树有
    史宁中
    NortheasternMathematicalJournal, 1998, (03) : 85 - 88
  • [42] Manhattan-Geodesic Embedding of Planar Graphs
    Katz, Bastian
    Krug, Marcus
    Rutter, Ignaz
    Wolff, Alexander
    GRAPH DRAWING, 2010, 5849 : 207 - +
  • [43] Geodesic graphs with constant mean curvature in spheres
    Fornari, S
    de Lira, JHS
    Ripoll, J
    GEOMETRIAE DEDICATA, 2002, 90 (01) : 201 - 216
  • [44] On the Geodesic Identification of Vertices in Convex Plane Graphs
    Alsaadi, Fawaz E.
    Salman, Muhammad
    Rehman, Masood Ur
    Khan, Abdul Rauf
    Cao, Jinde
    Alassafi, Madini Obad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [45] Geodesic Graphs with Constant Mean Curvature in Spheres
    Susana Fornari
    Jorge H. S. de Lira
    Jaime Ripoll
    Geometriae Dedicata, 2002, 90 : 201 - 216
  • [46] Local 2-Geodesic Transitivity of Graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Ákos Seress
    Annals of Combinatorics, 2014, 18 : 313 - 325
  • [47] Geodesic graphs for a homotopy class of virtual knots
    Horiuchi, Sumiko
    Ohyama, Yoshiyuki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (13)
  • [48] Local 2-Geodesic Transitivity of Graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Seress, Akos
    ANNALS OF COMBINATORICS, 2014, 18 (02) : 313 - 325
  • [49] Manifold learning using geodesic entropic graphs
    Hero, A
    Costa, J
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 412 - 412
  • [50] Normal geodesic graphs of constant mean curvature
    Alias, Luis J.
    Dajczer, Marcos
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2007, 75 (03) : 387 - 401