Continuous Flow Process for Cr(VI) Removal from Aqueous Solutions Using Resin Supported Zero-Valent Iron

被引:0
|
作者
A. Toli
Ch. Mystrioti
A. Xenidis
N. Papassiopi
机构
[1] National Technical University of Athens,Sch. of Mining and Metallurgical Eng.
关键词
nZVI nanocomposite; Macroreticular resin support; Chromate reduction; Continuous flow tests;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of the present study was to evaluate the performance of a nanocomposite material consisting of nano zero valent iron and a cation exchange resin, for the reduction of chromate, by conducting column tests. A cationic resin, Amberlyst 15, was selected as porous host material. The synthesis of the nanocomposite material (R-nFe) was carried out using Green Tea extract to obtain the reduction of adsorbed Fe(III) to the elemental state Fe(0). Three column tests were implemented with different dimensions, corresponding to variable contact times between the aqueous solution and the resin beads loaded with Fe(0), namely 168, 744 and 1260 s respectively for columns I, II and III. The results indicated that the removal of Cr(VI) follows a first order kinetic law with a chemical constant equal to 0.0526 min−1 (8.8 × 10–4 s−1).
引用
收藏
页码:409 / 414
页数:5
相关论文
共 50 条
  • [31] Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization
    Zhang, Wenying
    Qian, Linbo
    Ouyang, Da
    Chen, Yun
    Han, Lu
    Chen, Mengfang
    CHEMOSPHERE, 2019, 221 : 683 - 692
  • [32] Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites
    Song, Yao
    Wang, Liancheng
    Lv, Baoliang
    Chang, Guozhang
    Jiao, Weizhou
    Liu, Youzhi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (07) : 7015 - 7024
  • [33] Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles
    Wang, Fayuan
    Yang, Weiwei
    Zheng, Fangyuan
    Sun, Yuhuan
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (10)
  • [34] Competitive effects of trichloroethylene on Cr(VI) removal by zero-valent iron
    Lo, IMC
    Lam, CSC
    Lai, KCK
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2005, 131 (11) : 1598 - 1606
  • [35] Removal of Cr(VI) from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron
    Siciliano, Alessio
    MATERIALS, 2016, 9 (08):
  • [36] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Zhang, Yuling
    Li, Yimin
    Li, Jianfa
    Sheng, Guodong
    Zhang, Yun
    Zheng, Xuming
    CHEMICAL ENGINEERING JOURNAL, 2012, 185 : 243 - 249
  • [37] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Li, Y. (liym@usx.edu.cn), 1600, Elsevier B.V. (185-186):
  • [38] Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution
    Dong, Haoran
    Deng, Junmin
    Xie, Yankai
    Zhang, Cong
    Jiang, Zhao
    Cheng, Yujun
    Hou, Kunjie
    Zeng, Guangming
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 : 79 - 86
  • [39] Efficient Removal of Phosphate from Aqueous Solutions Using Kaolin-Supported Nanoscale Zero-Valent Iron Particles
    Timurtas, Merve
    Tunc, Muslun Sara
    WATER AIR AND SOIL POLLUTION, 2024, 235 (11):
  • [40] Nanoscale zero-valent iron loaded vermiform expanded graphite for the removal of Cr (VI) from aqueous solution
    Cai, Xinwei
    Qiu, Yangshuai
    Zhou, Yanhong
    Jiao, Xuan
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (08):