Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma

被引:0
|
作者
Lin Huang
Lin Wang
Xiaomeng Hu
Sen Chen
Yunwen Tao
Haiyang Su
Jing Yang
Wei Xu
Vadanasundari Vedarethinam
Shu Wu
Bin Liu
Xinze Wan
Jiatao Lou
Qian Wang
Kun Qian
机构
[1] Shanghai Jiao Tong University,State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering
[2] Shanghai Jiao Tong University,Department of Laboratory Medicine, Shanghai Chest Hospital
[3] iMS Clinic,Department of Chemistry
[4] Southern Methodist University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Early cancer detection greatly increases the chances for successful treatment, but available diagnostics for some tumours, including lung adenocarcinoma (LA), are limited. An ideal early-stage diagnosis of LA for large-scale clinical use must address quick detection, low invasiveness, and high performance. Here, we conduct machine learning of serum metabolic patterns to detect early-stage LA. We extract direct metabolic patterns by the optimized ferric particle-assisted laser desorption/ionization mass spectrometry within 1 s using only 50 nL of serum. We define a metabolic range of 100–400 Da with 143 m/z features. We diagnose early-stage LA with sensitivity~70–90% and specificity~90–93% through the sparse regression machine learning of patterns. We identify a biomarker panel of seven metabolites and relevant pathways to distinguish early-stage LA from controls (p < 0.05). Our approach advances the design of metabolic analysis for early cancer detection and holds promise as an efficient test for low-cost rollout to clinics.
引用
收藏
相关论文
共 50 条
  • [41] Rapid Identification of Micropapillary or Solid Component for Early-Stage Lung Adenocarcinoma
    Zhao, Z.
    Lau, R.
    Mok, T.
    Chen, G.
    Underwood, M.
    Ng, C.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2349 - S2349
  • [42] The surgical management of early-stage lung adenocarcinoma: is wedge resection effective?
    Ji, Ying
    Bai, Guangyu
    Qiu, Bin
    Zhao, Liang
    Zhou, Jing
    Xue, Qi
    Gao, Shugeng
    JOURNAL OF THORACIC DISEASE, 2021, 13 (04) : 2137 - +
  • [43] Histologic Subtype of Early-Stage Lung Adenocarcinoma is a Predictor of Failure Patterns after Stereotactic Body Radiation Therapy
    Leeman, Jonathan
    Rimner, Andreas
    Montecalvo, Joseph
    Hsu, Meier
    Zhang, Zhigang
    Von Reibnitz, Donata
    Panchoo, Kelly
    Yorke, Ellen
    Adusumilli, Prasad
    Travis, William
    Wu, Abraham
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (01) : S340 - S341
  • [44] Relationship between CT features and high preoperative serum carcinoembryonic antigen levels in early-stage lung adenocarcinoma
    Yamazaki, M.
    Ishikawa, H.
    Kunii, R.
    Tasaki, A.
    Sato, S.
    Ikeda, Y.
    Yoshimura, N.
    Aoyama, H.
    CLINICAL RADIOLOGY, 2014, 69 (06) : 559 - 566
  • [45] Prognostic impact of cancer-associated active fibroblasts and invasive architectural patterns on early-stage lung adenocarcinoma
    Yotsukura, Masaya
    Asamura, Hisao
    Suzuki, Shigeki
    Asakura, Keisuke
    Yoshida, Yukihiro
    Nakagawa, Kazuo
    Sakurai, Hiroyuki
    Watanabe, Shun-ichi
    Motoi, Noriko
    LUNG CANCER, 2020, 145 : 158 - 166
  • [46] Detection of Early-Stage Pancreatic Adenocarcinoma
    Gold, David V.
    Goggins, Michael
    Modrak, David E.
    Newsome, Guy
    Liu, Mengling
    Shi, Chanjuan
    Hruban, Ralph H.
    Goldenberg, David M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2010, 19 (11) : 2786 - 2794
  • [47] Treatment of Early-Stage Esophageal Adenocarcinoma
    Polish, Ariel
    Mulcahy, Mary F.
    JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2013, 11 (06): : 640 - 644
  • [48] Early-stage lung cancer detection via circulating microbial DNA biomarkers and machine learning classification
    Sepich-Poore, Gregory D.
    Fraraccio, Serena
    Wandro, Stephen
    Knight, Rob
    Miller-Montgomery, Sandrine
    Adams, Eddie
    CANCER RESEARCH, 2022, 82 (12)
  • [49] A machine learning-based PET/CT model for automatic diagnosis of early-stage lung cancer
    Wang, Huoqiang
    Li, Yi
    Han, Jiexi
    Lin, Qin
    Zhao, Long
    Li, Qiang
    Zhao, Juan
    Li, Haohao
    Wang, Yiran
    Hu, Changlong
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [50] Utility of Metabolic Parameters on FDG PET/CT in the Classification of Early-Stage Lung Adenocarcinoma Prediction of Pathological Invasive Size
    Iwano, Shingo
    Ito, Shinji
    Kamiya, Shinichiro
    Ito, Rintaro
    Kato, Katsuhiko
    Naganawa, Shinji
    CLINICAL NUCLEAR MEDICINE, 2019, 44 (07) : 560 - 565