Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma

被引:0
|
作者
Lin Huang
Lin Wang
Xiaomeng Hu
Sen Chen
Yunwen Tao
Haiyang Su
Jing Yang
Wei Xu
Vadanasundari Vedarethinam
Shu Wu
Bin Liu
Xinze Wan
Jiatao Lou
Qian Wang
Kun Qian
机构
[1] Shanghai Jiao Tong University,State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering
[2] Shanghai Jiao Tong University,Department of Laboratory Medicine, Shanghai Chest Hospital
[3] iMS Clinic,Department of Chemistry
[4] Southern Methodist University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Early cancer detection greatly increases the chances for successful treatment, but available diagnostics for some tumours, including lung adenocarcinoma (LA), are limited. An ideal early-stage diagnosis of LA for large-scale clinical use must address quick detection, low invasiveness, and high performance. Here, we conduct machine learning of serum metabolic patterns to detect early-stage LA. We extract direct metabolic patterns by the optimized ferric particle-assisted laser desorption/ionization mass spectrometry within 1 s using only 50 nL of serum. We define a metabolic range of 100–400 Da with 143 m/z features. We diagnose early-stage LA with sensitivity~70–90% and specificity~90–93% through the sparse regression machine learning of patterns. We identify a biomarker panel of seven metabolites and relevant pathways to distinguish early-stage LA from controls (p < 0.05). Our approach advances the design of metabolic analysis for early cancer detection and holds promise as an efficient test for low-cost rollout to clinics.
引用
收藏
相关论文
共 50 条
  • [1] Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
    Huang, Lin
    Wang, Lin
    Hu, Xiaomeng
    Chen, Sen
    Tao, Yunwen
    Su, Haiyang
    Yang, Jing
    Xu, Wei
    Vedarethinam, Vadanasundari
    Wu, Shu
    Liu, Bin
    Wan, Xinze
    Lou, Jiatao
    Wang, Qian
    Qian, Kun
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Detection of EGFR mutations in early-stage lung adenocarcinoma by machine learning-based radiomics
    Omura, Kenshiro
    Murakami, Yu
    Hashimoto, Kohei
    Takahashi, Hikaru
    Suzuki, Ryoko
    Yoshioka, Yasuo
    Oguchi, Masahiko
    Ichinose, Junji
    Matsuura, Yosuke
    Nakao, Masayuki
    Okumura, Sakae
    Mun, Mingyon
    TRANSLATIONAL CANCER RESEARCH, 2023, 12 (04) : 837 - +
  • [3] Determination and evaluation of serum monosaccharides in patients with early-stage lung adenocarcinoma
    Su Wenhao
    Hao Cui
    Yang Yifei
    Zeng Pengjiao
    Dou Huaiqian
    Zhang Meng
    He Yanli
    Zhang Yiran
    Shan Ming
    Du Wenxing
    Jiao Wenjie
    Zhang Lijuan
    中华医学杂志英文版, 2025, 138 (03)
  • [4] Determination and evaluation of serum monosaccharides in patients with early-stage lung adenocarcinoma
    Su, Wenhao
    Hao, Cui
    Yang, Yifei
    Zeng, Pengjiao
    Dou, Huaiqian
    Zhang, Meng
    He, Yanli
    Zhang, Yiran
    Shan, Ming
    Du, Wenxing
    Jiao, Wenjie
    Zhang, Lijuan
    CHINESE MEDICAL JOURNAL, 2025, 138 (03) : 352 - 354
  • [5] Early-Stage Lung Cancer Detection Using Machine Learning
    Sreedevi, J.
    Bai, M. Rama
    Sujini, G. Naga
    Mahesh, Muthyala
    Satyanarayana, B.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (05): : 306 - 313
  • [6] Prognostic phenotypes of early-stage lung adenocarcinoma
    Lamort, Anne-Sophie
    Kaiser, Jan Christian
    Pepe, Mario A. A.
    Lilis, Ioannis
    Ntaliarda, Giannoula
    Somogyi, Kalman
    Spella, Magda
    Behrend, Sabine J.
    Giotopoulou, Georgia A.
    Kujawa, Willem
    Lindner, Michael
    Koch, Ina
    Hatz, Rudolf A.
    Behr, Juergen
    Sotillo, Rocio
    Schamberger, Andrea C.
    Stathopoulos, Georgios T.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60 (01)
  • [7] The spatial landscape of early-stage lung adenocarcinoma
    Kim, Junbum
    Ravichandran, Hiranmayi
    Yoffe, Liron
    Binder, Bhavneet
    McGraw, Timothy
    Altorki, Nasser K.
    Mittel, Vivek
    Elemento, Olivier
    CANCER RESEARCH, 2024, 84 (06)
  • [8] Impact of High-Grade Patterns in Early-Stage Lung Adenocarcinoma: A Multicentric Analysis
    Pietro Bertoglio
    Vittorio Aprile
    Luigi Ventura
    Maria Cattoni
    Dania Nachira
    Filippo Lococo
    Maria Rodriguez Perez
    Francesco Guerrera
    Fabrizio Minervini
    Giulia Querzoli
    Giovanni Bocchialini
    Diana Bacchin
    Francesca Franzi
    Guido Rindi
    Salvatore Bellafiore
    Federico Femia
    Giuseppe Salvatore Bogina
    Piergiorgio Solli
    Peter Kestenholz
    Enrico Ruffini
    Massimiliano Paci
    Stefano Margaritora
    Andrea Selenito Imperatori
    Marco Lucchi
    Letizia Gnetti
    Alberto Claudio Terzi
    Lung, 2022, 200 : 649 - 660
  • [9] Impact of High-Grade Patterns in Early-Stage Lung Adenocarcinoma: A Multicentric Analysis
    Bertoglio, Pietro
    Aprile, Vittorio
    Ventura, Luigi
    Cattoni, Maria
    Nachira, Dania
    Lococo, Filippo
    Rodriguez Perez, Maria
    Guerrera, Francesco
    Minervini, Fabrizio
    Querzoli, Giulia
    Bocchialini, Giovanni
    Bacchin, Diana
    Franzi, Francesca
    Rindi, Guido
    Bellafiore, Salvatore
    Femia, Federico
    Bogina, Giuseppe Salvatore
    Solli, Piergiorgio
    Kestenholz, Peter
    Ruffini, Enrico
    Paci, Massimiliano
    Margaritora, Stefano
    Imperatori, Andrea Selenito
    Lucchi, Marco
    Gnetti, Letizia
    Terzi, Alberto Claudio
    LUNG, 2022, 200 (05) : 649 - 660
  • [10] Machine Learning of Serum Metabolic Patterns Encodes Asymptomatic SARS-CoV-2 Infection
    Wan, Qiongqiong
    Chen, Moran
    Zhang, Zheng
    Yuan, Yu
    Wang, Hao
    Hao, Yanhong
    Nie, Wenjing
    Wu, Liang
    Chen, Suming
    FRONTIERS IN CHEMISTRY, 2021, 9