Einstein–æther models III: conformally static metrics, perfect fluid and scalar fields

被引:0
|
作者
Genly Leon
Alfredo D. Millano
Joey Latta
机构
[1] Universidad Católica del Norte,Departamento de Matemáticas
[2] Dalhousie University,Department of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic properties of conformally static metrics in Einstein–æther theory with a perfect fluid source and a scalar field are analyzed. In case of perfect fluid, some relativistic solutions are recovered such as: Minkowski spacetime, the Kasner solution, a flat FLRW space and static orbits depending on the barotropic parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. To analyze locally the behavior of the solutions near a sonic line v2=γ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^2=\gamma -1$$\end{document}, where v is the tilt, a new “shock” variable is used. Two new equilibrium points on this line are found. These points do not exist in General Relativity when 1<γ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\gamma <2 $$\end{document}. In the limiting case of General Relativity these points represent stiff solutions with extreme tilt. Lines of equilibrium points associated with a change of causality of the homothetic vector field are found in the limit of general relativity. For non-homogeneous scalar field ϕ(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (t,x)$$\end{document} with potential V(ϕ(t,x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\phi (t,x))$$\end{document} the symmetry of the conformally static metric restrict the scalar fields to be considered to ϕ(t,x)=ψ(x)-λt,V(ϕ(t,x))=e-2tU(ψ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi (t,x)=\psi (x)-\lambda t, V(\phi (t,x))= e^{-2 t} U(\psi (x))$$\end{document}, U(ψ)=U0e-2ψλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\psi )=U_0 e^{-\frac{2 \psi }{\lambda }}$$\end{document}. An exhaustive analysis (analytical or numerical) of the stability conditions is provided for some particular cases.
引用
收藏
相关论文
共 50 条
  • [31] STATIC, SPHERICALLY SYMMETRIC COUPLED EINSTEIN-MAXWELL CONFORMALLY INVARIANT SCALAR FIELD IN GENERAL-RELATIVITY
    ACCIOLY, AJ
    VAIDYA, AN
    SOM, MM
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 81 (02): : 235 - 242
  • [32] Scalar field as a perfect fluid: thermodynamics of minimally coupled scalars and Einstein frame scalar-tensor gravity
    Faraoni, Valerio
    Giardino, Serena
    Giusti, Andrea
    Vanderwee, Robert
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (01):
  • [33] Scalar field as a perfect fluid: thermodynamics of minimally coupled scalars and Einstein frame scalar-tensor gravity
    Valerio Faraoni
    Serena Giardino
    Andrea Giusti
    Robert Vanderwee
    The European Physical Journal C, 83
  • [34] On the integrability of Friedmann-Robertson-Walker models with conformally coupled massive scalar fields
    Coelho, L. A. A.
    Skea, J. E. F.
    Stuchi, T. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (07)
  • [35] Integrable multicomponent perfect fluid multidimensional cosmology .2. Scalar fields
    Kasper, U
    Rainer, M
    Zhuk, A
    GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (09) : 1123 - 1162
  • [36] Kantowski-Sachs Einstein-aether perfect fluid models
    Latta, Joey
    Leon, Genly
    Paliathanasis, Andronikos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (11):
  • [37] Cosmologies with Perfect Fluids and Scalar Fields in Einstein's Gravity: Phantom Scalars and Nonsingular Universes
    Cimaglia, Michela
    Gengo, Massimo
    Pizzocchero, Livio
    UNIVERSE, 2024, 10 (12)
  • [38] FRW MODELS WITH PERFECT FLUID AND SCALAR FIELD IN HIGHER DERIVATIVE THEORY
    Singh, C. P.
    Singh, Vijay
    MODERN PHYSICS LETTERS A, 2011, 26 (20) : 1495 - 1507
  • [39] Classification of non-conformally flat static plane symmetric perfect fluid solutions via proper conformal vector fields in f (T) gravity
    Ali, Murtaza
    Hussain, Fiaz
    Shabbir, Ghulam
    Hussain, S. F.
    Ramzan, Muhammad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (14)
  • [40] All static spherically symmetric perfect-fluid solutions of Einstein's equations
    Lake, K
    PHYSICAL REVIEW D, 2003, 67 (10):