Einstein–æther models III: conformally static metrics, perfect fluid and scalar fields

被引:0
|
作者
Genly Leon
Alfredo D. Millano
Joey Latta
机构
[1] Universidad Católica del Norte,Departamento de Matemáticas
[2] Dalhousie University,Department of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic properties of conformally static metrics in Einstein–æther theory with a perfect fluid source and a scalar field are analyzed. In case of perfect fluid, some relativistic solutions are recovered such as: Minkowski spacetime, the Kasner solution, a flat FLRW space and static orbits depending on the barotropic parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. To analyze locally the behavior of the solutions near a sonic line v2=γ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^2=\gamma -1$$\end{document}, where v is the tilt, a new “shock” variable is used. Two new equilibrium points on this line are found. These points do not exist in General Relativity when 1<γ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\gamma <2 $$\end{document}. In the limiting case of General Relativity these points represent stiff solutions with extreme tilt. Lines of equilibrium points associated with a change of causality of the homothetic vector field are found in the limit of general relativity. For non-homogeneous scalar field ϕ(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (t,x)$$\end{document} with potential V(ϕ(t,x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\phi (t,x))$$\end{document} the symmetry of the conformally static metric restrict the scalar fields to be considered to ϕ(t,x)=ψ(x)-λt,V(ϕ(t,x))=e-2tU(ψ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi (t,x)=\psi (x)-\lambda t, V(\phi (t,x))= e^{-2 t} U(\psi (x))$$\end{document}, U(ψ)=U0e-2ψλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\psi )=U_0 e^{-\frac{2 \psi }{\lambda }}$$\end{document}. An exhaustive analysis (analytical or numerical) of the stability conditions is provided for some particular cases.
引用
收藏
相关论文
共 50 条
  • [1] Einstein-æther models III: conformally static metrics, perfect fluid and scalar fields
    Leon, Genly
    Millano, Alfredo D.
    Latta, Joey
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [2] NON-EXISTENCE OF STATIC SPHERICALLY SYMMETRIC CONFORMALLY FLAT ZERO-MASS SCALAR FIELDS WITH PERFECT FLUID DISTRIBUTION
    REDDY, DRK
    INNAIAH, P
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1985, 23 (09) : 450 - 451
  • [3] STATIC CHARGED PERFECT FLUID IN A CONFORMALLY FLAT SPACETIME
    BANERJEE, A
    SANTOS, NO
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (04) : 824 - 826
  • [4] CONFORMALLY FLAT STATIC SPHERICALLY SYMMETRIC PERFECT-FLUID DISTRIBUTION IN EINSTEIN-CARTAN-THEORY
    KALYANSHETTI, SB
    WAGHMODE, BB
    PHYSICAL REVIEW D, 1983, 27 (12): : 2835 - 2838
  • [5] CONFORMALLY FLAT GRAVITATIONAL-FIELDS OF PERFECT FLUID
    OBOZOV, VI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (02): : 12 - 16
  • [6] All conformally flat Einstein-Gauss-Bonnet static metrics
    Hansraj, Sudan
    Govender, Megandhren
    Banerjee, Ayan
    Mkhize, Njabulo
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (06)
  • [7] STATIC PERFECT FLUID IN THE EINSTEIN-CARTAN-THEORY
    SOM, MM
    BEDRAN, ML
    AMARAL, CM
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (02): : 683 - 688
  • [8] Einstein static universe in scalar-fluid theories
    Boehmer, Christian G.
    Tamanini, Nicola
    Wright, Matthew
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [9] Static perfect fluid spacetime with half conformally flat spatial factor
    Leandro, Benedito
    Solorzano, Newton
    MANUSCRIPTA MATHEMATICA, 2019, 160 (1-2) : 51 - 63
  • [10] Static perfect fluid spacetime with half conformally flat spatial factor
    Benedito Leandro
    Newton Solórzano
    manuscripta mathematica, 2019, 160 : 51 - 63