Exciton-like trap states limit electron mobility in TiO2 nanotubes

被引:0
|
作者
Christiaan Richter
Charles A. Schmuttenmaer
机构
[1] Yale University,Department of Chemistry
[2] Present address: Rochester Institute of Technology,undefined
[3] Chemical and Biomedical Engineering,undefined
[4] 160 Lomb Memorial Drive,undefined
[5] Rochester,undefined
[6] New York 14623-5603 USA,undefined
来源
Nature Nanotechnology | 2010年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nanoparticle films have become a promising low-cost, high-surface-area electrode material for solar cells and solar fuel production1,2. Compared to sintered nanoparticle films, oriented polycrystalline titania nanotubes offer the advantage of directed electron transport, and are expected to have higher electron mobility3,4,5,6,7. However, macroscopic measurements have revealed their electron mobility to be as low as that of nanoparticle films8,9. Here, we show, through time-resolved terahertz spectroscopy10, that low mobility in polycrystalline TiO2 nanotubes is not due to scattering from grain boundaries or disorder-induced localization as in other nanomaterials11,12, but instead results from a single sharp resonance arising from exciton-like trap states. If the number of these states can be lowered, this could lead to improved electron transport in titania nanotubes and significantly better solar cell performance.
引用
收藏
页码:769 / 772
页数:3
相关论文
共 50 条
  • [21] Trap States Comparison of Mesoporous TiO2 Photoanodes with Different Particle Sizes
    Ma, Yanmei
    Hu, Linhua
    Mo, Li'e
    Xi, Xiaowang
    Dai, Songyuan
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 5787 - 5790
  • [22] Relaxation of Electron Carriers in the Density of States of Nanocrystalline TiO2
    Bertoluzzi, Luca
    Herraiz-Cardona, Isaac
    Gottesman, Ronen
    Zaban, Arie
    Bisquert, Juan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (04): : 689 - 694
  • [23] TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells
    Hu, Yan
    Cai, Kaiyong
    Luo, Zhong
    Xu, Dawei
    Xie, Daichao
    Huang, Yuran
    Yang, Weihu
    Liu, Peng
    ACTA BIOMATERIALIA, 2012, 8 (01) : 439 - 448
  • [24] Growth of tadpole-like carbon nanotubes from TiO2 nanoparticies
    Zhang, Lili
    Liu, Chang
    Liu, Bilu
    Yu, Wan-Jing
    Hou, Peng-Xiang
    Cheng, Hui-Ming
    CARBON, 2013, 55 : 253 - 259
  • [25] Carbon nanotubes/TiO2 nanotubes hybrid supercapacitor
    Wang, Qiang
    Wen, Zhenhai
    Li, Jinghong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3328 - 3331
  • [26] Effects of Electron-Beam Pretreatment on Anodically Grown TiO2 Nanotubes
    Choi, Yong-Wook
    Seong, Mijeong
    Yoo, Hyeonseok
    Park, Dong-Wha
    Oh, Seung Kyu
    Kwak, Joon Seop
    Jung, Yongan
    Choi, Jinsub
    ECS ELECTROCHEMISTRY LETTERS, 2015, 4 (04) : C15 - C17
  • [27] Improving the Osteoblast Cell Adhesion on Electron Beam Controlled TiO2 Nanotubes
    Yoon, Sung Wook
    Shim, Hyun Ju
    Shim, In-Bo
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [28] Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography
    Hungria, A. B.
    Eder, D.
    Windle, A. H.
    Midgley, P. A.
    CATALYSIS TODAY, 2009, 143 (3-4) : 225 - 229
  • [29] Electron field emission from Fe-doped TiO2 nanotubes
    Wang, Chih-Chieh
    Wang, Kuan-Wen
    Perng, Tsong-Pyng
    APPLIED PHYSICS LETTERS, 2010, 96 (14)
  • [30] The Preparation and Applications of TiO2 Nanotubes
    张云怀
    胡夫
    肖鹏
    材料导报, 2007, (S1) : 91 - 94