Asymptotically stable periodic orbits of a coupled electromechanical system

被引:0
|
作者
M. J. H. Dantas
R. Sampaio
R. Lima
机构
[1] Universidade Federal de Uberlândia,Faculdade de Matemática
[2] PUC-Rio,Mechanical Engineering Department
来源
Nonlinear Dynamics | 2014年 / 78卷
关键词
Electromechanical system; Parametric excitation; Periodic orbit; Regular perturbation theory; Asymptotic stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an electromechanical system is analyzed. The existence and asymptotic stability of a periodic orbit are obtained in a mathematically rigorous way as well as an expansion of the period by using an adequate small parameter. For the analytical results the main tool used is the regular perturbation theory. Some results, such as the growing of the period according to some powers of the parameters and the relation 2:1 between the period of the cart, which is a part of the electromechanical system, and the period of the current, are compatible with earlier numerical findings.
引用
收藏
页码:29 / 35
页数:6
相关论文
共 50 条
  • [41] Periodic orbits in a two-variable coupled map
    Houlrik, Jens M.
    CHAOS, 1992, 2 (03) : 323 - 327
  • [42] Existence of asymptotically stable periodic solutions of a Rayleigh type equation
    Wang, Yong
    Zhang, Liang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1728 - 1735
  • [43] Ground states for diffusion system with periodic and asymptotically periodic nonlinearity
    Zhang, Jian
    Tang, Xianhua
    Zhang, Wen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (02) : 633 - 641
  • [44] Short periodic orbits for the Lorenz system
    Galias, Zbigniew
    Tucker, Warwick
    ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, : 285 - 288
  • [45] Periodic orbits of diffusionless Lorenz system
    Dong Cheng-Wei
    ACTA PHYSICA SINICA, 2018, 67 (24)
  • [46] Resonances of periodic orbits in the Lorenz system
    Antonio Algaba
    Estanislao Gamero
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Nonlinear Dynamics, 2016, 84 : 2111 - 2136
  • [47] Superluminal periodic orbits in the Lorenz system
    Algaba, A.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 220 - 232
  • [48] Resonances of periodic orbits in the Lorenz system
    Algaba, Antonio
    Gamero, Estanislao
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    NONLINEAR DYNAMICS, 2016, 84 (04) : 2111 - 2136
  • [49] NUMERICAL-METHODS FOR LOCATING STABLE PERIODIC-ORBITS EMBEDDED IN A LARGELY CHAOTIC SYSTEM
    MARCINEK, R
    POLLAK, E
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (08): : 5894 - 5904
  • [50] Stability and Hopf bifurcation periodic orbits in delay coupled Lotka-Volterra ring system
    Su, Rina
    Zhang, Chunrui
    OPEN MATHEMATICS, 2019, 17 : 962 - 978