In this paper, we will study concentration inequalities for Banach space-valued martingales. Firstly, we prove that a Banach space X is linearly isomorphic to a p-uniformly smooth space (1<p≤2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p\le 2$$\end{document}) if and only if an Azuma-type inequality holds for X-valued martingales. This can be viewed as a generalization of Pinelis’ work on an Azuma inequality for martingales with values in 2-uniformly smooth spaces. Secondly, an Azuma-type inequality for self-normalized sums will be presented. Finally, some further inequalities for Banach space-valued martingales, such as moment inequalities for double indexed dyadic martingales and De la Peña-type inequalities for conditionally symmetric martingales, will also be discussed.