Drift estimation for discretely sampled SPDEs

被引:0
|
作者
Igor Cialenco
Francisco Delgado-Vences
Hyun-Jung Kim
机构
[1] Illinois Institute of Technology,Department of Applied Mathematics
[2] UNAM,Catedra Conacyt and Instituto de Matemáticas
关键词
Fractional stochastic heat equation; Parabolic SPDE; Stochastic evolution equations; Statistical inference for SPDEs; Drift estimation; Discrete sampling; High-frequency sampling; 60H15; 65L09; 62M99;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the asymptotic properties of the maximum likelihood estimator (MLE) of the drift coefficient for fractional stochastic heat equation driven by an additive space-time noise. We consider the traditional for stochastic partial differential equations statistical experiment when the measurements are performed in the spectral domain, and in contrast to the existing literature, we study the asymptotic properties of the maximum likelihood (type) estimators (MLE) when both, the number of Fourier modes and the time go to infinity. In the first part of the paper we consider the usual setup of continuous time observations of the Fourier coefficients of the solutions, and show that the MLE is consistent, asymptotically normal and optimal in the mean-square sense. In the second part of the paper we investigate the natural time discretization of the MLE, by assuming that the first N Fourier modes are measured at M time grid points, uniformly spaced over the time interval [0, T]. We provide a rigorous asymptotic analysis of the proposed estimators when N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document} and/or T,M→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T,M\rightarrow \infty $$\end{document}. We establish sufficient conditions on the growth rates of N, M and T, that guarantee consistency and asymptotic normality of these estimators.
引用
收藏
页码:895 / 920
页数:25
相关论文
共 50 条
  • [31] MINIMAX PROPERTIES OF FRECHET MEANS OF DISCRETELY SAMPLED CURVES
    Bigot, Jeremie
    Gendre, Xavier
    ANNALS OF STATISTICS, 2013, 41 (02): : 923 - 956
  • [32] Pricing Discretely-Sampled Variance Swaps on Commodities
    Chunhawiksit, Chonnawat
    Rujivan, Sanae
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (03): : 711 - 724
  • [33] Fisher's information for discretely sampled Levy processes
    Ait-Sahalia, Yacine
    Jacod, Jean
    ECONOMETRICA, 2008, 76 (04) : 727 - 761
  • [34] An improved convolution algorithm for discretely sampled Asian options
    Cerny, Ales
    Kyriakou, Ioannis
    QUANTITATIVE FINANCE, 2011, 11 (03) : 381 - 389
  • [35] Maxima of discretely sampled random fields, with an application to 'bubbles'
    Taylor, J. E.
    Worsley, K. J.
    Gosselin, F.
    BIOMETRIKA, 2007, 94 (01) : 1 - 18
  • [36] Nonparametric inference of discretely sampled stable Levy processes
    Zhao, Zhibiao
    Wu, Wei Biao
    JOURNAL OF ECONOMETRICS, 2009, 153 (01) : 83 - 92
  • [37] PROPAGATION OF UNCERTAINTY IN DISCRETELY SAMPLED SURFACE ROUGHNESS PROFILES
    Brennan, James K.
    Crampton, Andrew
    Jiang, Xiang
    Leach, Richard K.
    Harris, Peter M.
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY VII, 2006, 72 : 271 - +
  • [38] Strong solutions to SPDEs with monotone drift in divergence form
    Carlo Marinelli
    Luca Scarpa
    Stochastics and Partial Differential Equations: Analysis and Computations, 2018, 6 : 364 - 396
  • [39] OPTIMAL RATE OF CONVERGENCE FOR APPROXIMATIONS OF SPDES WITH NONREGULAR DRIFT
    Butkovsky, Oleg
    Dareiotis, Konstantinos
    Gerencser, Mate
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 1103 - 1137
  • [40] Strong solutions to SPDEs with monotone drift in divergence form
    Marinelli, Carlo
    Scarpa, Luca
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (03): : 364 - 396