Einstein four-manifolds of three-nonnegative curvature operator

被引:0
|
作者
Peng Wu
机构
[1] Fudan University,Shanghai Center for Mathematical Sciences
来源
Mathematische Zeitschrift | 2019年 / 293卷
关键词
Einstein four-manifolds; -positive curvature operator; Positive sectional curvature; Positive isotropic curvature; Berger curvature decomposition; Weitzenböck formula; Refined Kato inequality; First eigenvalue of the Laplace operator; Primary 58E11; 53C25; 53C24; Secondary 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that Einstein four-manifolds of 3-positive curvature operator are isometric to (S4,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^4, g_0)$$\end{document} or (CP2,gFS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {C}}P^2, g_{FS})$$\end{document}, and Einstein four-manifolds of 3-nonnegative curvature operator are isometric to (S4,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^4, g_0)$$\end{document}, (CP2,gFS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {C}}P^2, g_{FS})$$\end{document}, or (S2×S2,g0⊕g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^2\times S^2, g_0\oplus g_0)$$\end{document}, up to rescaling. We also prove that the first eigenvalue of the Laplace operator for Einstein four-manifolds with Ric=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Ric}=g$$\end{document} and nonnegative sectional curvature is bounded above by 43+413\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{3}+4^{\frac{1}{3}}$$\end{document}. The basic idea of the proofs is to construct an “integrated subharmonic function”, and the main ingredients of the proofs are curvature decompositions (in particular Berger decomposition), the Weitzenböck formula, and the refined Kato inequality. Along with the proofs, we also discover an alternative proof for the Weitzenböck formula using Berger decomposition, and an alternative proof for the refined Kato inequality using Derdziński’s argument.
引用
收藏
页码:1489 / 1511
页数:22
相关论文
共 50 条