Stability of Some Cactaceae Proteins Based on Fluorescence, Circular Dichroism, and Differential Scanning Calorimetry Measurements

被引:0
|
作者
Shela Gorinstein
Marina Zemser
Francisco Vargas-Albores
Jose-Luis Ochoa
Octavio Paredes-Lopez
Christian Scheler
Sevil Aksu
Johann Salnikow
机构
[1] The Hebrew University-Hadassah Medical School,Department of Pharmaceutical Chemistry, School of Pharmacy
[2] Centro de Investigaciones Biologicas del Noroeste SC,Division de Biologia Experimental
[3] Centro de Investigacion y de Estudios Avanzados del IPN,Departamento de Biotecnologia y Bioquimica
[4] Unidad Irapuato,Institut für Biochemie und Molekulare Biologie
[5] Wittman Institute of Technology and Analysis of Biomolecules,undefined
[6] Technische Universitat Berlin,undefined
[7] Affiliated with the David R. Bloom Center for Pharmacy,undefined
来源
关键词
Cactaceae; proteins; electrophoresis; fluorescence; calorimetry; denaturation; spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of α-helix.
引用
收藏
页码:239 / 247
页数:8
相关论文
共 50 条
  • [31] Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy
    Streicher, Werner W.
    Makhatadze, George I.
    BIOCHEMISTRY, 2007, 46 (10) : 2876 - 2880
  • [32] DIFFERENTIAL SCANNING CALORIMETRY FOR RESOLVING MIXTURES OF NATIVE PROTEINS
    SMITH, MB
    BACK, JF
    PROCEEDINGS OF THE AUSTRALIAN BIOCHEMICAL SOCIETY, 1976, 9 : 16 - 16
  • [33] Differential scanning calorimetry of proteins under high pressure
    Obuchi, K
    Yamanobe, T
    TRENDS IN HIGH PRESSURE BIOSCIENCE AND BIOTECHNOLOGY, PROCEEDINGS, 2002, 19 : 599 - 606
  • [34] Influence of the emissivity of the sample on differential scanning calorimetry measurements
    Wolfinger, MG
    Rath, J
    Krammer, G
    Barontini, F
    Cozzani, V
    THERMOCHIMICA ACTA, 2001, 372 (1-2) : 11 - 18
  • [35] Differential scanning calorimetry measurements on molten magnesium alloys
    Wang, D.
    Overfelt, R. A.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 461 - 469
  • [36] Modulated Differential Scanning Calorimetry Measurements of 27 Compounds
    Bloxham, Joseph C.
    Hogge, Joseph
    Giles, Neil F.
    Knotts, Thomas A.
    Wilding, W. Vincent
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2021, 66 (07): : 2773 - 2782
  • [37] ISOTHERMAL CRYSTALLIZATION MEASUREMENTS ON COPOLYESTERS BY DIFFERENTIAL SCANNING CALORIMETRY
    VANICEK, J
    BUDIN, J
    BERKA, M
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1977, 12 (01) : 83 - 89
  • [38] GLASS TRANSITION MEASUREMENTS ON POLYSTYRENE BY DIFFERENTIAL SCANNING CALORIMETRY
    LAMBERT, A
    POLYMER, 1969, 10 (05) : 319 - &
  • [39] Heat capacity measurements by dynamic differential scanning calorimetry
    Ozawa, T
    Kanari, K
    THERMOCHIMICA ACTA, 1996, 288 (1-2) : 39 - 51
  • [40] Differential scanning calorimetry study of haemin thermal stability
    Z. Drzazga
    A. Michnik
    M. Zimnicka
    Journal of Thermal Analysis and Calorimetry, 2003, 72 : 555 - 563