Permutation Patterns and Cell Decompositions

被引:0
|
作者
Toufik Mansour
Matthias Schork
机构
[1] University of Haifa,Department of Mathematics
来源
关键词
Permutation; Pattern avoidance; Wilf-equivalence; Primary 05A15; Secondary 05A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_n$$\end{document} be the symmetric group of all permutations of n letters, and let Sn(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_n(T)$$\end{document} be the set of those permutations which avoid a given set of patterns T. In the present paper, we consider a τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-reduction argument where τ∈Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \mathcal {S}_m$$\end{document} is given and all patterns in T are assumed to contain τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. For these situations, cell decompositions are introduced and studied. We describe an observation which allows to reduce the determination of the generating function for |Sn(T)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}_n(T)|$$\end{document} to the determination of a set of generating functions for simpler problems. The usefulness of this approach is demonstrated by several examples.
引用
收藏
页码:169 / 183
页数:14
相关论文
共 50 条
  • [31] Consecutive permutation patterns in trees and mappings
    Panholzer, Alois
    JOURNAL OF COMBINATORICS, 2021, 12 (01) : 17 - 54
  • [32] Six Permutation Patterns Force Quasirandomness
    Crudele, Gabriel
    Dukes, Peter
    Noel, Jonathan A.
    DISCRETE ANALYSIS, 2024,
  • [33] Gapped permutation patterns for comparative genomics
    Parida, Laxmi
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2006, 4175 : 376 - 387
  • [34] Some open problems on permutation patterns
    Steingrimsson, Einar
    SURVEYS IN COMBINATORICS 2013, 2013, 409 : 239 - 263
  • [35] The complexity of counting poset and permutation patterns
    Cooper, Joshua
    Kirkpatrick, Anna
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 154 - 165
  • [36] Limit Densities of Patterns in Permutation Inflations
    Khovanova, Tanya
    Zhang, Eric
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01): : 1 - 13
  • [38] On piecewise linear cell decompositions
    Kirillov, Alexander, Jr.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (01): : 95 - 108
  • [39] PERMUTATION PATTERNS AND PHOTOTRANSPOSITIONS OF 2-CYANOPYRROLES
    BARLTROP, J
    DAY, AC
    MOXON, PD
    WARD, RR
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1975, (19) : 786 - 787
  • [40] A Central Limit Theorem for Vincular Permutation Patterns
    Hofer, Lisa
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 19 (02):