Permutation Patterns and Cell Decompositions

被引:0
|
作者
Toufik Mansour
Matthias Schork
机构
[1] University of Haifa,Department of Mathematics
来源
关键词
Permutation; Pattern avoidance; Wilf-equivalence; Primary 05A15; Secondary 05A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_n$$\end{document} be the symmetric group of all permutations of n letters, and let Sn(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_n(T)$$\end{document} be the set of those permutations which avoid a given set of patterns T. In the present paper, we consider a τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-reduction argument where τ∈Sm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \mathcal {S}_m$$\end{document} is given and all patterns in T are assumed to contain τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. For these situations, cell decompositions are introduced and studied. We describe an observation which allows to reduce the determination of the generating function for |Sn(T)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}_n(T)|$$\end{document} to the determination of a set of generating functions for simpler problems. The usefulness of this approach is demonstrated by several examples.
引用
收藏
页码:169 / 183
页数:14
相关论文
共 50 条