Experimental study of the overall cooling effectiveness of f-type impinging-film cooling configurations

被引:0
|
作者
JingYu Zhang
Ming Liu
Cheng Gong
Ce Yuan
XiaoMin He
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Energy and Power Engineering
[2] Jiangsu Province Key Laboratory of Aerospace Power System,undefined
来源
Heat and Mass Transfer | 2022年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Impinging film cooling as an efficient design of the cooling structure can be used in the combustor of high-performance aero-engines. In this work, experiments were implemented to investigate the overall cooling effectiveness of the F-type impinging-film structure concerning various geometric parameters and flowing factors. Effects of blowing ratio M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}, jet-hole diameter d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, jet-to plate pitch z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z$$\end{document}, and jet holes spacing y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} on the overall cooling effectiveness are investigated. Nine configurations with different non-dimensional impinging height Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document} (1.5 ≤ Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}≤3.2), non-dimensional jet hole spacing Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} (1.96 ≤ Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}≤3.5), and jet hole diameter d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} (d=1,1.2,1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\mathrm{1,1.2,1.6}mm$$\end{document}) are studied. Experiment results show that the overall cooling effectiveness η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} increases with the increase of blowing ratios M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}, and this tendency becomes weaker as the blowing ratio M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} exceeds 1.31. The non-dimensional impinging height Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=1.5 makes a high cooling performance at all blowing ratios M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}. The area-averaged cooling effectiveness of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=1.5 is 2.1% higher than that of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=2.4 and is 3.2% higher than that of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=3.2 at M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}=1.31. The cooling effectiveness of Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =1.96 increases by 2% to 5% when compared to Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =2.56 and Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =3.5. When the blowing ratio increases, the cooling effects of Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}=1.96 and Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}=2.56 are almost identical. At the same open percentage and cold air flow rate, the cooling effectiveness of d=1.2mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.2mm$$\end{document} is 0.8% ~ 2.5% higher than that of d=1mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1mm$$\end{document} and is 2.3% ~ 6% higher than that of d=1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.6mm$$\end{document}. Finally, using the experimental data, empirical correlations were proposed to fit the overall cooling effectiveness based on the flow and geometrical parameters.
引用
收藏
页码:1473 / 1484
页数:11
相关论文
共 50 条
  • [11] Sensitivity analysis and modeling uncertainties quantification for impinging-film cooling via active subspaces
    Wei, Jieli
    Wang, Nana
    Zhang, Jingyu
    He, Xiaomin
    International Journal of Heat and Mass Transfer, 2025, 245
  • [12] Experimental and numerical investigations of overall cooling effectiveness on a vane endwall with jet impingement and film cooling
    Yang, Xing
    Liu, Zhansheng
    Zhao, Qiang
    Liu, Zhao
    Feng, Zhenping
    Guo, Fushui
    Ding, Liang
    Simon, Terrence W.
    APPLIED THERMAL ENGINEERING, 2019, 148 : 1148 - 1163
  • [13] Experimental study of cooling effectiveness of impingement/ cocurrent convection/film cooling
    Yang, Wei-Hua
    Wang, Mei-Juan
    Ding, You-Hong
    Zhang, Jing-Zhou
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2010, 25 (04): : 729 - 734
  • [14] Experimental Study on the Improvement of Film Cooling Effectiveness of Various Modified Configurations Based on a Fan-Shaped Film Cooling Hole on an Endwall
    Kim, Seokmin
    Lee, Dongeun
    Kang, Young Seok
    Rhee, Dong-Ho
    ENERGIES, 2023, 16 (23)
  • [15] The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type
    Li Yingjian
    You Xinkui
    Qiu Qi
    Li Jiezhi
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 53 - 59
  • [16] Numerical decoupling of the effect of internal cooling and external film cooling on overall cooling effectiveness
    Liu, Runzhou
    Li, Haiwang
    You, Ruquan
    Tao, Zhi
    Huang, Yi
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [17] Experimental Study on the Improvement of the Film Cooling Effectiveness of Various Modified Configurations Based on a Fan-Shaped Film Cooling Hole on a Flat Plate
    Kim, Seokmin
    Lee, Dongeun
    Kang, Young Seok
    Rhee, Dong-Ho
    ENERGIES, 2023, 16 (23)
  • [18] Experimental Study on the Overall Cooling Effectiveness of Effusion-Cooling Ceramic Matrix Composite Platform
    Du, Kun
    Chen, Qihao
    Huang, Xiaoyang
    Liang, Tingrui
    Liu, Cunliang
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (03) : 1034 - 1048
  • [19] Experimental Study on the Overall Cooling Effectiveness of Effusion-Cooling Ceramic Matrix Composite Platform
    DU Kun
    CHEN Qihao
    HUANG Xiaoyang
    LIANG Tingrui
    LIU Cunliang
    Journal of Thermal Science, 2023, 32 (03) : 1034 - 1048
  • [20] EXPERIMENTAL STUDY ON OVERALL COOLING EFFECTIVENESS OF SWIRL-STABILIZED MODEL COMBUSTOR WITH EFFUSION COOLING
    Ji, Yongbin
    Zhang, Liang
    Jin, Ming
    Ge, Bing
    Zang, Shusheng
    Xin, Jianhua
    Wu, Weiliang
    Li, Mingjia
    Xu, Wenyan
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 5A, 2019,