Experimental study of the overall cooling effectiveness of f-type impinging-film cooling configurations

被引:0
|
作者
JingYu Zhang
Ming Liu
Cheng Gong
Ce Yuan
XiaoMin He
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Energy and Power Engineering
[2] Jiangsu Province Key Laboratory of Aerospace Power System,undefined
来源
Heat and Mass Transfer | 2022年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Impinging film cooling as an efficient design of the cooling structure can be used in the combustor of high-performance aero-engines. In this work, experiments were implemented to investigate the overall cooling effectiveness of the F-type impinging-film structure concerning various geometric parameters and flowing factors. Effects of blowing ratio M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}, jet-hole diameter d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, jet-to plate pitch z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z$$\end{document}, and jet holes spacing y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} on the overall cooling effectiveness are investigated. Nine configurations with different non-dimensional impinging height Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document} (1.5 ≤ Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}≤3.2), non-dimensional jet hole spacing Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} (1.96 ≤ Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}≤3.5), and jet hole diameter d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} (d=1,1.2,1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\mathrm{1,1.2,1.6}mm$$\end{document}) are studied. Experiment results show that the overall cooling effectiveness η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} increases with the increase of blowing ratios M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}, and this tendency becomes weaker as the blowing ratio M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} exceeds 1.31. The non-dimensional impinging height Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=1.5 makes a high cooling performance at all blowing ratios M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}. The area-averaged cooling effectiveness of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=1.5 is 2.1% higher than that of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=2.4 and is 3.2% higher than that of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{n}$$\end{document}=3.2 at M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}=1.31. The cooling effectiveness of Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =1.96 increases by 2% to 5% when compared to Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =2.56 and Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document} =3.5. When the blowing ratio increases, the cooling effects of Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}=1.96 and Yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y}_{n}$$\end{document}=2.56 are almost identical. At the same open percentage and cold air flow rate, the cooling effectiveness of d=1.2mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.2mm$$\end{document} is 0.8% ~ 2.5% higher than that of d=1mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1mm$$\end{document} and is 2.3% ~ 6% higher than that of d=1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.6mm$$\end{document}. Finally, using the experimental data, empirical correlations were proposed to fit the overall cooling effectiveness based on the flow and geometrical parameters.
引用
收藏
页码:1473 / 1484
页数:11
相关论文
共 50 条
  • [1] Experimental study of the overall cooling effectiveness of f-type impinging-film cooling configurations
    Zhang, JingYu
    Liu, Ming
    Gong, Cheng
    Yuan, Ce
    He, XiaoMin
    HEAT AND MASS TRANSFER, 2022, 58 (09) : 1473 - 1484
  • [2] Experimental investigation on the overall cooling effectiveness of t-type impinging-film cooling
    Zhang Jingyu
    Yuan Ce
    Ji Pengfei
    Wei Jieli
    He Xiaomin
    APPLIED THERMAL ENGINEERING, 2018, 128 : 595 - 603
  • [3] EFFECTIVENESS OF IMPINGING-FILM COOLING FOR DIFFERENT INDUCTING SLABS
    Wei, Jieli
    Zhang, Jingyu
    He, Xiaomin
    Jin, Yi
    Li, Ji
    Zheng, Mei
    HEAT TRANSFER RESEARCH, 2019, 50 (13) : 1285 - 1305
  • [4] Experimental Investigation on Flow Field Characteristics of Impinging-Film Cooling
    Zhang, Jingyu
    Jiang, Ping
    Yuan, Ce
    He, Xiaomin
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2021, 2021 (2021)
  • [5] Effects of impingement parameters on impinging-film cooling performance
    Zhang J.
    Wei J.
    He X.
    Li J.
    Luo D.
    Wu Y.
    Heat Transfer Research, 2021, 51 (13) : 1241 - 1260
  • [6] EFFECTS OF IMPINGEMENT PARAMETERS ON IMPINGING-FILM COOLING PERFORMANCE
    Zhang, Jingyu
    Wei, Jieli
    He, Xiaomin
    Li, Ji
    Luo, Dong
    Wu, Yu
    HEAT TRANSFER RESEARCH, 2020, 51 (13) : 1241 - 1260
  • [7] Numerical study on impinging-film hybrid cooling effect with different geometries
    Wei, Jieli
    Zhang, Jingyu
    Li, Shuai
    Wang, Fei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 92 : 199 - 216
  • [8] EXPERIMENTAL STUDY ON ANALOGY PRINCIPLE OF OVERALL COOLING EFFECTIVENESS FOR COMPOSITE COOLING STRUCTURES WITH BOTH INTERNAL COOLING AND FILM COOLING
    Xie, Gang
    Liu, Cun-liang
    Wang, Rui
    Ye, Lin
    Niu, Jiajia
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 5A, 2019,
  • [9] Parametric Studies of Laminated Cooling Configurations: Overall Cooling Effectiveness
    Wang, Chen
    Wang, Chunhua
    Zhang, Jingzhou
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2021, 2021
  • [10] Experimental decoupled-analysis of overall cooling effectiveness for a turbine endwall with internal and external cooling configurations
    Wu, Hang
    Yang, Xing
    Wu, Yongqiang
    Feng, Zhenping
    APPLIED THERMAL ENGINEERING, 2023, 228