Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity

被引:0
|
作者
Jonathan Rohleder
Christian Seifert
机构
[1] Stockholms universitet Matematik,
[2] TU Hamburg Institut für Mathematik,undefined
来源
关键词
Schrödinger operator; Quantum graph; Tree; Absolutely continuous spectrum; Primary 34L05; Secondary 34L40; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
On an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}- and weighted δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta '$$\end{document}-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.
引用
收藏
页码:439 / 453
页数:14
相关论文
共 50 条